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HIGHLIGHTS

• SnO2‑Co‑carbon nanocomposites were in‑situ prepared from Co‑based metal–organic frameworks and showed a remarkably high 
initial Coulombic efficiency (82.2%) and a capacity of ~ 800 mAh g−1 at a high current density of 5 A g−1.

• Facile approach for designing highly reversible and stable electrodes for next‑generation high‑performance lithium‑ion batteries.

ABSTRACT The two major limitations in the application of  SnO2 for lithium‑ion battery 
(LIB) anodes are the large volume variations of  SnO2 during repeated lithiation/delithiation 
processes and a large irreversible capacity loss during the first cycle, which can lead to a 
rapid capacity fade and unsatisfactory initial Coulombic efficiency (ICE). To overcome 
these limitations, we developed composites of ultrafine  SnO2 nanoparticles and in situ 
formed Co(CoSn) nanocrystals embedded in an N‑doped carbon matrix using a Co‑based 
metal–organic framework (ZIF‑67). The formed Co additives and structural advantages 
of the carbon‑confined  SnO2/Co nanocomposite effectively inhibited Sn coarsening in the 
lithiated  SnO2 and mitigated its structural degradation while facilitating fast electronic 
transport and facile ionic diffusion. As a result, the electrodes demonstrated high ICE 
(82.2%), outstanding rate capability (~ 800 mAh g−1 at a high current density of 5 A g−1), and long‑term cycling stability (~ 760 mAh g−1 after 
400 cycles at a current density of 0.5 A g−1). This study will be helpful in developing high‑performance Si (Sn)‑based oxide, Sn/Sb‑based 
sulfide, or selenide electrodes for LIBs. In addition, some metal organic frameworks similar to ZIF‑67 can also be used as composite templates.

KEYWORDS Ultrafine  SnO2 nanostructures; ZIF‑67 frameworks; Enhanced initial Coulombic efficiency; Reversible conversion 
reaction
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1 Introduction

Over the past few years, the applications of lithium‑ion bat‑
teries (LIBs) have extended from consumer electronics to 
power batteries. This impressive progress achieved in this 
field suggests that LIBs will continue to be a dominant 
power source for electric vehicles in the next decade [1]. In 
the pursuit of further improvement of LIBs, various efforts 
have been made to rationalize their design and to develop 
advanced electrode materials with high specific capacity, 
prolonged life span, and good rate capability [2, 3]. Graph‑
ite is the most widely used LIB anode. However, it exhibits 
a limited specific capacity of 372 mAh g−1. Therefore, in 
2011, Sony Corporation produced novel LIBs (Nexelion). 
Specifically, their anodes consisted of Sn‑Co–C compos‑
ites. Various tin‑based anodes have also been fabricated in 
order to develop high‑performance LIBs [2–4]. Among these 
anodes, tin oxide  (SnO2) anodes have been extensively stud‑
ied because  SnO2 can store  Li+ via a two‑step reaction and 
shows a high theoretical specific capacity of 1494 mAh g−1. 
In the  Li+ storage of  SnO2, the first step is the conversion 
reaction  (SnO2 + 4Li → Sn + 2Li2O), which generates a 
capacity of 731 mAh g−1. In the subsequent lithiation/del‑
ithiation process, an alloying reaction (Sn + 4.4Li → Li4.4Sn) 
occurs, delivering a capacity of 763 mAh g−1 [6–8]. How‑
ever, there are two major challenges in developing  SnO2 
anodes with a high specific capacity: (i) capacity loss 
induced by the huge volume variations (greater than 300%) 
generated during cycling, (ii) the irreversibility of the con‑
version reaction, which reduces the initial Coulombic effi‑
ciency (ICE) of the anode [5–7].

Various attempts have been made to overcome these 
limitations. For example, various carbon‑based  SnO2 com‑
posites have been developed to accommodate the volume 
expansions caused by cycling in order to achieve cycling 
stability [8–18]. However, this carbon composite approach 
cannot improve the ICE of  SnO2 anodes. Hu et al. reported 
that  SnO2 electrodes with Sn grains < 11  nm in diam‑
eter show a completely reversible conversion reaction 
(Sn + Li2O → SnO2) [19]. Transition metals (M = Cu, Fe, 
Mn, Co, etc.) or metal oxides are used to stabilize nanostruc‑
tured  SnO2 and can also improve the reversibility of the con‑
version reaction between  Li2O and  SnO2 [4, 20–25]. Inactive 

metals can buffer the expansion of Sn particles (to coarsen 
them) and migrate to the Sn/Li2O surface so that Sn can 
remain active with  Li2O. Thus, the introduction of transition 
metals can improve the ICE of  SnO2 electrodes. To sum up, 
there are mainly three mainstream solutions for develop‑
ing high‑performance  SnO2‑based anodes: (1) designing a 
unique carbon‑based structure including the surface coating 
to suppress the full volume expansions [26, 27] while pro‑
viding an expansion space [8, 28–31], (2) preparing ultrafine 
 SnO2 nanoparticles to aggrandize the grain boundaries and 
alleviate the mechanical strain and improve the reversibility 
of the conversion reaction [6], and (3) introducing transition 
metals or forming intermetallic alloys to make the conver‑
sion reaction reversible and mitigate the expansion of Sn 
simultaneously [4, 20–23].

Recently, metal–organic frameworks (MOFs) with inor‑
ganic (Co and Zn) and organic molecules have been used 
as a novel 3D porous carbon source for developing adjust‑
able templates to anchor guest transition metals [32–34]. 
In this study, we fabricated a novel ternary  SnO2‑Co‑C 
composite by mixing ultrafine  SnO2 nanoparticles with a 
Co‑based MOF (ZIF‑67) (denoted as N‑u‑SCC) to develop 
LIB anodes with high ICE and long‑term cycle stability. 
ZIF‑67 serves as a sacrificial template for the formation of 
Co additives and 3D porous carbon frameworks. This well‑
designed structure showed the advantages of the unique 3D 
carbon‑based nanostructure with in situ formed Co additives 
and suppressed the volume expansions and Sn coarsening of 
the lithiated  SnO2. This improved the cycling performance 
of the anodes and rendered the conversion reaction highly 
reversible. The 3D porous carbon framework served as an 
excellent carrier for  SnO2 (to be anchored) and improved the 
conductivity of the entire composite while providing enough 
space for volume variations during the lithiation/delithiation 
process. The in situ formed Co additives not only prevented 
the covering of  SnO2 by  Li2O and alleviated the volume 
expansions, but also served as good electron conductors. 
As a result, the N‑u‑SCC‑2 electrode showed a high ICE of 
82.2% (average level). In addition, the electrodes showed 
extraordinary specific capacity (~ 975 mAh g−1 after 100 
cycles at 0.2 A g−1), high capacity retention (78.6% after 
100 cycles at 0.2 A g−1), excellent rate capability (a revers‑
ible capacity of ~ 800 mAh g−1 under the current density of 
5 A g−1), and prolonged life span.
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2  Experimental Section

All the chemicals used in this work were analytically pure 
and were commercially available. Commercial  SnO2 and 
Co(NO3)2·6H2O, 2‑methylimidazole were purchased from 
Shanghai Macklin Biochemical Co. Ltd.  Na2SnO3 and urea 
were purchased from Xilong Scientific.

2.1  Synthesis of Ultrafine  SnO2

Ultrafine  SnO2 was prepared by modifying the method 
reported by Lou et al. [3]. In a typical reaction, 2.5 mmol 
of  NaSnO3·4H2O and 16 mmol of urea were added into a 
solution of 145 mL of  H2O and 15 mL of ethanol and the 
resulting mixture was stirred for 1 h. The reaction mix‑
ture was then transferred to a Teflon‑lined stainless‑steel 
autoclave, which was heated in an oven at 190 °C for 15 h. 
The reaction mixture was centrifuged to obtain precipitates, 
which were dried at 80 °C overnight and annealed at 550 °C 
for 4 h.

2.2  Synthesis of ZIF‑67 Frameworks

ZIF‑67 frameworks were prepared by a simple liquid‑
phase method. Certain amounts of Co(NO3)2·6H2O (listed 
in Tables 1 and S1) (A) and 2‑methylimidazole (B) were 
separately added into equal proportions of a methanol/etha‑
nol solution under stirring, and the resulting solutions were 
labeled as solutions A and B, respectively. Solution B was 
quickly added to solution A, and the resulting mixture was 
vigorously stirred for another 3 min. The reaction mixture 
was then static aged for 22 h [33]. Precipitates were sepa‑
rated from the solution by centrifugation and were freeze‑
dried and then annealed at 550 °C for 2 h.

2.3  Synthesis of N‑c‑SCC and N‑u‑SCC Composites

The N‑doped commercial  SnO2‑Co‑C (denoted as N‑c‑SCC) 
and N‑u‑SCC composites were prepared using a method 
similar to that used for the preparation of the ZIF‑67 frame‑
works. The only difference was that 0.2 g of  SnO2 (com‑
mercial or ultrafine) was added into solution A followed by 
sonication for 0.5 h. After the sonication, solution A was 
stirred for another 10 min for better dispersion. Then, solu‑
tion B was quickly added to solution A and the resulting 
mixture was stirred vigorously for another 3 min. The reac‑
tion mixture was then static aged for 22 h. The precipitates 
separated from the solution by centrifugation were freeze‑
dried and then annealed at 550 °C for 2 h.

2.4  Material Characterization

The morphology of the as‑prepared samples was examined 
by a SUPRA 55 field‑emission scanning electron microscope 
(FESEM). Transmission electron microscopy (TEM) exami‑
nations were carried out on a JEOL JEM 2100F at 200 kV. 
The elemental mapping and energy‑dispersive X‑ray spec‑
troscopy (EDS) measurements of the samples were taken 
on an energy‑dispersive X‑ray spectrometer equipped with 
the JEOL 2100F microscope. The powder X‑ray diffraction 
(XRD) patterns of the samples were recorded on a Rigaku 
Ultima IV with Cu Kα radiation (λ = 0.15418 nm). X‑ray 
photoelectron spectroscopy (XPS) analysis was carried out 
using an Axis Ultra DLD spectrometer.

2.5  Electrochemical Measurements

The electrochemical performance of the as‑prepared com‑
posites was evaluated using R2032 coin‑type half cells 
assembled in a glove box filled with argon. The oxygen and 
moisture contents of the glove box were < 0.5 ppm. The 
electrodes were prepared by confecting a slurry containing 
the active materials, carbon black, and carboxymethyl cel‑
lulose with a ratio of 7:2:1 in a solution of water and ethanol. 
This slurry solution was stirred for 8 h and was then casted 
onto a Cu foil and dried at 80 °C for 12 h under vacuum. The 
active material loading on each electrode was 0.9–1.1 mg. 
A solution of 1 M  LiPF6 in ethylene carbonate and diethyl 
carbonate (at a volume ratio of 1:2) containing 10 wt% 
fluoroethylene carbonate (FEC) was used as the electrolyte. 

Table 1  Part of basic facts of the N‑u‑SCC composites

Defined 
name

Mole dosage of 
Co(NO3)2·6H2O 
(mmol)

Mole dosage 
of 2‑Melm 
(mmol)

Carbon 
content 
(%)

ICE (%)

N‑u‑SCC‑1 1.25 10 5.43 75.0
N‑u‑SCC‑2 1.25 20 9.68 82.2
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The electrochemical measurements of the electrodes were 
taken using a Neware battery tester over the potential range 
of 0.01–3.0 V. The specific capacity of the composites was 
calculated using their whole masses. Cyclic voltammetry 
(CV) measurements were taken on an electrochemical work‑
station (CHI 660C) over the voltage range of 0.01–3 V at a 
scan rate of 0.1 mV s−1.

3  Results and Discussion

Figure  1 shows the schematic of the synthesis of N‑u‑
SCC. The as‑prepared ultrafine  SnO2 nanoparticles and 
Co(NO3)2·6H2O were uniformly dispersed in an alcoholic 
solution. To this solution, an alcoholic solution of 2‑methyl‑
imidazole (2‑Melm) was added to generate the  SnO2@ZIF‑
67 composite. After annealing under an inert atmosphere, 

ZIF‑67 carbonized and its structure collapsed. This eventu‑
ally resulted in the formation of carbon frameworks with 
metallic Co. We also prepared composites using commercial 
 SnO2. For this, commercial  SnO2 was added to the alco‑
holic solution during the synthesis of ZIF‑67. The reaction 
mixture was then heat‑treated under an inert atmosphere to 
finally obtain the in situ formed N‑c‑SCC. Table S1 lists the 
synthetic formulae and ICE values of the three N‑c‑SCC 
electrodes. The morphology of commercial  SnO2 and the 
three N‑c‑SCC composites is shown in Fig. S1.

The phase composition of the samples was analyzed using 
their XRD patterns. The XRD patterns shown in Fig. 2a 
reveal that  SnO2 (JCPDS No. 77‑0447) was the main phase 
of all the three samples. With an increase in the carbon con‑
tent, the CoSn phase of the samples became predominant. 
No other impurity was detected. Figure 2b shows the ICE 

SnO2@Co2+ SnO2@ZIF-67 SnO2@Co-NC

annealing

Co2+ or Co
SnO2

2-Melm

Fig. 1  Schematic of the synthesis of N‑u‑SCC
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of the pure commercial  SnO2 and N‑c‑SCC electrodes. The 
N‑c‑SCC electrodes showed better electrochemical perfor‑
mance than the pure commercial  SnO2 electrode. The ICE 
of the N‑c‑SCC electrodes increased from 62.6 to 72.5%. 
This is because Co nanoparticles improved the reversibility 
of the conversion reaction on  SnO2. Taking the variate into 
consideration, this remarkable improvement in the ICE of 
the N‑c‑SCC electrodes was due to the ZIF‑67 frameworks, 
which consisted only of Co and carbon. This demonstrates 
the viability of our design, in which ZIF‑67 was used as the 
sacrificial template. To further evaluate the electrochemical 
performance of the four electrodes, their charge–discharge 
curves were plotted, as shown in Fig. S2. The charging 
potential of all the  SnO2 electrodes could be divided into 
three regions, each of which involved different reaction 
processes. Similarly, the capacity of the electrodes in each 
cycle could be divided into three parts: 0.01–1.0 V corre‑
sponding to the dealloying reaction  (LixSn → Sn), 1.0–2.4 V 
corresponding to the conversion reaction (Sn → SnO2), and 
2.4–3.0 V corresponding to some other reactions like the 
consumption of the electrolyte [25]. On the basis of the 
electrochemical measurements and morphological analysis 
of the electrodes, it can be stated that (1) the contact area 
between Co and  SnO2 significantly improves the reversibility 
of the conversion reaction. At the N‑u‑SCC‑1, the highest 
capacity was observed in all the cycles over the potential 
range of 1.0–2.4 V. (2) An increase in the carbon content 

improved the reversibility of the conversion reaction and 
the cycling stability of the electrodes. Figure S2 reveals that 
the N‑c‑SCC‑3 electrode showed the best cycling stability.

To further optimize the electrochemical performance of the 
 SnO2 electrodes, commercial  SnO2 was substituted by the as‑
prepared ultrafine  SnO2 nanoparticles (~ 15 nm). The N‑doped 
ultrafine  SnO2‑Co‑C composites (denoted as N‑u‑SCC) were 
prepared using a method same as that used for preparing the 
N‑c‑SCC composites. Table 1 lists the synthetic formulae, 
carbon contents, and Sn and Co weight ratios of the two 
N‑u‑SCC composites. The morphology of the ultrafine  SnO2 
nanoparticles and N‑u‑SCC‑1 and N‑u‑SCC‑2 electrodes was 
observed. Figure 3a, d shows that the ultrafine  SnO2 nano‑
particles had a diameter of ~ 15 nm and were evenly distrib‑
uted in the composites. The morphology and diameter of 
the frameworks of N‑u‑SCC‑1 (Figs. 3b, e) were similar to 
those shown in Fig. S1c. This can be attributed to the same 
Co(NO3)2·6H2O/2‑Melm ratio (1:8) in both the cases. Since 
the ultrafine  SnO2 particles were much smaller than commer‑
cial  SnO2 particles, they offered a larger contact area with 
metallic Co. At the Co(NO3)2·6H2O/2‑Melm ratio of 1:16, the 
frameworks became less stable and could be hardly observed. 
However, carbon was predominant, as shown in Fig. 3c, f.

The morphology of the N‑u‑SCC‑2 composite was fur‑
ther analyzed by TEM. Figure 4a shows a typical TEM 
image of the as‑ prepared N‑u‑SCC‑2 composite. It can be 
observed that the carbon frameworks consisted of  SnO2 

Fig. 3  Morphology of a, d ultrafine  SnO2; b, e N‑u‑SCC‑1; c, f N‑u‑SCC‑2
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and Co (CoSn) nanoparticles (light zone), which allevi‑
ated the volume variations during the subsequent dein‑
tercalation reactions. The sufficient contact area between 
 SnO2 and Co (CoSn) improved the reversibility of the 
conversion reaction, thus improving the ICE and cycling 
performance of the electrode. The lattice distances of 0.32 
and 0.24 nm (Fig. 4b) correspond to the (110) and (200) 
planes of crystalline  SnO2. The lattice distance of 0.22 nm 
corresponds to the (111) lattice plane of CoSn. The lat‑
tice distances of Sn could not be detected. This can be 

attributed to the low Sn content of the nanocomposite 
and the similarity in the lattice distances of Sn and  SnO2. 
Figure 4c shows the elemental mapping of the N‑u‑SCC‑2 
composite under ultrahigh magnification. This figure con‑
firms that Sn and Co were uniformly distributed in the 
carbon frameworks and showed sufficient contact. The 
Sn and Co weight ratios of N‑u‑SCC‑2 were about 50.8% 
and 11.2%, respectively, while those of N‑u‑SCC‑1 were 
51.5% and 25.1%, respectively, as revealed by the EDS 
results (Table S2).

Fig. 4  a TEM, b high‑resolution TEM, and c elemental mapping images of the N‑u‑SCC‑2 composites
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The phase composition of the ultrafine  SnO2 particles and 
N‑u‑SCC‑1  (SnO2‑ratio 1 in Fig. 5a) and N‑u‑SCC‑2 com‑
posites  (SnO2‑ratio 2 in Fig. 5a) was analyzed using their 
XRD patterns. The XRD peaks of ultrafine  SnO2 could be 
indexed to JCPDS No. 77‑0447. Like commercial  SnO2, both 

N‑u‑SCC‑1 and N‑u‑SCC‑2 consisted of the CoSn phase, 
which was formed during the annealing process. This con‑
firms the presence of Co in these composites. It should be 
noted that N‑u‑SCC‑2 showed the Sn metal phase (Fig. 5a). 
This can be attributed to its stronger reduction capability 
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owing to its higher carbon content (according to the EDS 
results; Tables 1 and S2). N‑u‑SCC‑1 consisted mainly of 
the  SnO2 phase with little CoSn. N‑u‑SCC‑2 also consisted 
of  SnO2 as the main phase with small fractions of the Sn 
and CoSn phases. In these composites, Co mainly existed 
as the CoSn phase. Figure 5b compares the ICE values of 
the N‑u‑SCC electrodes. The N‑u‑SCC‑2 electrode showed 
the highest ICE value of about 82.2% (Fig. S4). N‑u‑SCC‑2 
showed a higher ICE than N‑u‑SCC‑1 because of its larger 
Sn/Co contact area, as revealed by the FESEM images.

The valence states of Sn and Co in the N‑u‑SCC‑2 com‑
posite were analyzed by XPS. As can be observed from 
Fig. 5c, Sn showed a main valence of  Sn4+. This is consist‑
ent with the observation that  SnO2 was the main phase of 
this composite. In addition, some Sn present on the sur‑
face showed a valence of zero. This can be attributed to 
the reduction of metallic Sn by carbon and Co during the 
annealing process (as observed from the XRD patterns). 
Oxygen vacancies were generated at this point. The Co 2p 
spectra (Fig. 5d) of the near‑surface region of the compos‑
ite showed three types of valence (Co, CoO, and  Co2O3). 
The increasing valence could be assigned to the oxidation 
of metallic Co. The small amount of oxidation in the near 
surface of the composite could not be detected by XRD. 
Figure 5e, f shows the N 1s and C 1s spectra of the N‑u‑
SCC‑2 composite and confirms the presence of N and C in 
it. Moreover, the high‑resolution N 1s XPS spectra showed 
that the composite consisted of pyridinic N (398.7 eV) and 
pyrrolic N (400.5 eV) (Fig. S5). The pyridinic N and pyr‑
rolic N contents of this composite were 80.3% and 19.7%, 
respectively (Fig. S5). These results indicate the N‑doped 
C composite  SnO2 was the main active phase of the N‑u‑
SCC‑2 composite.

Figure 6a shows the CV curves of the N‑u‑SCC‑2 elec‑
trode. The peak observed at ~ 0.87 V during the first cycle 
can be attributed to the reduction of  SnO2 to metallic Sn or 
SnO and the formation of solid–electrolyte interface (SEI) 
layers, which accounted for the disappearing of this peak 
in the subsequent cycles. The relatively large area of this 
peak indicates that a large amount of reaction/layer was 
formed. The peaks observed at around 0.3 and 0.2 V in the 
subsequent cycles correspond to a series of Li–Sn alloying 
reactions. The anodic peaks at 0.50, 0.61, 0.73, and 0.78 V 
can be attributed to the  LixSn → Sn dealloying reactions. 
This is consistent with the differential charge capacity ver‑
sus voltage curves obtained in the subsequent cycles. The 

broad peaks at 1.25 and 2.06 V correspond to the reversible 
oxidation of metallic Sn to SnO and  SnO2, respectively. The 
peaks remained stable and could be clearly observed dur‑
ing the 4th cycle, demonstrating the high reversibility of 
the conversion reactions. After the first cycle, the curves 
showed similar peak patterns, indicating that the stability of 
the electrode increased gradually. Figure 6b shows the first 
three discharge/charge curves of the N‑u‑SCC‑2 electrode at 
a current density of 0.2 A g−1. The initial discharge capac‑
ity of the electrode was 1365.2 mAh g−1. Similar curves 
were obtained in the subsequent cycles. This attests the high 
ICE and excellent cycling performance of the electrode. For 
unveiling the reversible nature of the conversion reaction, 
the differential charge capacity versus voltage curves of 
the N‑u‑SCC‑2 electrode at the 1st, 10th, 50th, and 100th 
cycles were obtained (Fig. 6c). The peaks observed over the 
potential range of 0.01–1.0 V correspond to the dealloying 
reactions  (LixSn to Sn), while the peaks at 1.0 to − 2.4 V 
correspond to the conversion reactions (Sn to SnO or  SnO2) 
after 100 cycles. The peaks (integral intensities and poten‑
tial positions) corresponding to the conversion reactions 
remained the same (1st and 2nd cycles) even after the 50th 
cycle. These results demonstrate the high reversibility of the 
conversion reaction.

The N‑u‑SCC‑2 electrode showed a reversible discharge 
capacity of ~ 975 mAh g−1 after 100 cycles (Fig. 6d) at a 
current density of 0.2 A g−1, which corresponds to a capac‑
ity retention ratio of 78.6% (when compared with the 2nd 
cycle). On the other hand, the N‑u‑SCC‑1 and pure  SnO2 
electrodes exhibited much smaller reversible discharge 
capacities of 504 and 226.0 mAh g−1, respectively, after 
100 cycles. The first discharge capacities of the N‑u‑SCC‑2, 
N‑u‑SCC‑1, and pure  SnO2 electrodes were 1365.2, 990.5, 
and 1736.7 mAh g−1, respectively. This high capacity reten‑
tion of the N‑u‑SCC‑2 electrode can be attributed to its high 
carbon content, which provided more space for volume vari‑
ations along with a larger Sn/Co contact area to inhibit the 
volume expansion, thus increasing the cycling life of the 
electrode. It should be noted that the N‑u‑SCC‑2 electrode 
showed an average ICE of 82.2% because of the formation 
of SEI layers. This improved the reversibility of the reactions 
between  SnO2 and Li. On the other hand, the N‑u‑SCC‑1 and 
pure  SnO2 electrodes showed an ICE of 68.1% and 59.7%, 
respectively (Fig. S6). The N‑u‑SCC‑2 electrode exhibited 
smaller internal resistance than the other two electrodes, as 
revealed by the electrochemical impedance spectroscopy 



Nano‑Micro Lett. (2019) 11:18 Page 9 of 13 18

1 3

(EIS) measurements shown in Fig. S7a. The EIS measure‑
ments of the N‑u‑SCC‑2 electrode after 100 cycles were also 
taken. An equivalent circuit consisting of the resistances of 
the electrolyte (Re), charge transfer (Rct), and constant phase 
elements and Warburg impedance was proposed to fit the 
impedance data. Low Rct values were obtained after 100 
cycles (179–32 Ω), suggesting the enhanced charge transfer 
kinetics (Table S4). In addition, the N‑u‑SCC‑2 electrode 
showed excellent rate capability. Figure S8a shows the dis‑
charge/charge curves of the electrode at different current 

densities. All the curves showed similar trend with the same 
discharge/charge platform. Furthermore, a reversible capac‑
ity of ~ 800 mAh g−1 was obtained when the current density 
was increased to 5 A g−1. At the current densities of 0.2, 0.5, 
1, 2, and 5 A g−1, discharge capacities of ~ 1500, 1240, 1090, 
965, and 800 mAh g−1, respectively, were obtained. As the 
current returned to 0.2 A g−1, the capacity became stable, as 
shown in Fig. S8b. This extraordinary rate capability of N‑u‑
SCC‑2 was not due to its unique nanostructure consisting 
only of Co and carbon framework, but can be attributed to 
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the oxygen vacancies, which improved the conductivity and 
transportation of  Li+ [28, 31, 35–40]. The N‑u‑SCC‑2 elec‑
trode exhibited a cycling life of up to 450 cycles and main‑
tained a reversible capacity of ~ 760 mAh g−1 at the current 
density of 0.5 A g−1, as shown in Fig. 6e. After 150 cycles, 
the diffusion kinetics of lithium ions improved after the ini‑
tial activation. The optimization of the SEI layer at the ini‑
tial stage leads to capacity fading because of its breakdown 
and reconstruction. The cycling performance of an electrode 
improves after the formation of a stable SEI layer. The long‑
term cycling performance of the N‑u‑SCC‑2 electrodes at 
relatively high current densities of 1 A g−1 for 200 cycles 
and 2 A g−1 for 300 cycles was also evaluated, as shown in 
Fig. S9. As can be observed from the figure, the electrode 
exhibited a desirable long‑term cycling performance.

We also compared the ICE of the N‑u‑SCC‑2 anode with 
that of previously reported  SnO2/C LIB anodes. (Materials 

for LIBs are listed in Table S3.) The N‑u‑SCC‑2 anode 
showed the highest ICE and outstanding electrochemical 
properties. Figure 7 shows the schematic of the delithiation 
process of pure  SnO2,  SnO2/C, and N‑u‑SCC electrodes. 
As shown in Fig. 7a, after lithiation,  SnO2 particles became 
larger and the distances between them decreased. This 
resulted in the gradual agglomeration of  SnO2 nanoparticles, 
leading to poor cycling life and low ICE of the electrode. 
Upon the incorporation of carbon materials like graphene 
and 3D frameworks (Fig. 7b), these  SnO2 particles scat‑
tered and became more dispersive in the original state after 
being coated with carbon. The introduced carbon materials 
suppressed the volume variations of  SnO2 particles during 
lithiation, provided extra space for volume variations, and 
served as barriers to prevent the aggregation of  SnO2 parti‑
cles so that the particles were still dispersive after delithia‑
tion. Similarly, the N‑u‑SCC‑2 composite consisted of 3D 

lithiation delithiation

lithiation delithiation

lithiation

(a)

(b)

(c)

SnO2 CoSn CoLixSn C

delithiation

Fig. 7  Schematic of the delithiation process of a pure  SnO2, b  SnO2/C, and c N‑u‑SCC
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carbon frameworks, which prevented the aggregation and 
volume variations of  SnO2 particles during lithiation. How‑
ever, the 3D carbon frameworks in this composite consisted 
of uniformly distributed Co (CoSn) particles. Co does not 
participate in the delithiation reactions and remains stable. 
This makes Co a powerful barrier to prevent the volume var‑
iations and particle agglomeration of  SnO2. Thus, the exqui‑
sitely designed N‑u‑SCC‑2 composite showed extraordinary 
electrochemical properties. Figure S10 shows the FESEM 
images of the ultrafine  SnO2 particles and N‑u‑SCC‑2 com‑
posites after 100 cycles. Pure  SnO2 grains showed severe 
aggregation (Fig. S10b), while N‑u‑SCC‑2 exhibited little 
aggregation and a morphology similar to that observed ini‑
tially (Fig. S10d). Figure S10e, f shows the TEM images 
of the original N‑u‑SCC‑2 and N‑u‑SCC‑2 electrodes after 
discharging to 1.0 V. The morphology remained the same 
except that the latter became amorphous. These observations 
demonstrate the potential of the N‑u‑SCC‑2 composite for 
application as an LIB anode.

4  Conclusion

In summary, a novel ternary  SnO2‑Co‑C nanocomposite 
(N‑u‑SCC) was successfully prepared via a simple and low‑
cost synthesis method. In this design, the in situ formation 
of Co additives from the Co‑based ZIF‑67 framework ren‑
dered the  SnO2 conversion reaction highly reversible and 
the N‑doped carbon frameworks efficiently mitigated the 
structural degradation of  SnO2 while facilitating electronic 
transport and ionic diffusion. Accordingly, the optimized 
N‑u‑SCC electrodes exhibited excellent electrochemical 
performance with high ICE (average 82.2%), outstanding 
rate performance (800 mAh g−1 at 5 A g−1), and long‑term 
cycling performance (~ 760 mAh g−1 after 400 cycles at a 
current density of 0.5 A g−1). These findings will be helpful 
for developing highly reversible and stable electrodes for 
next‑generation high‑performance LIBs.
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