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HIGHLIGHTS

e A multiscale theoretical framework deciphers the molecular-ionic dynamics of the electric double layer (EDL) in aqueous recharge-
able zinc batteries, correlating interfacial water aggregation, anion-specific adsorption, and electric field inhomogeneity to parasitic

reactions and dendrite growth, thereby establishing EDL-driven design principles for ultra-stable Zn anodes.

® Molecular adsorption engineering creates a localized “water-poor and anion-expelled” EDL configuration that suppresses hydrogen
evolution and by-product formation while enabling dense Zn electrodeposition through flattened interfacial potential gradients and

reduced Zn** electrostatic repulsion.

ABSTRACT The electric double layer (EDL) at the electrochemical inter-

face is crucial for ion transport, charge transfer, and surface reactions in
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aqueous rechargeable zinc batteries (ARZBs). However, Zn anodes rou-
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tinely encounter persistent dendrite growth and parasitic reactions, driven by

the inhomogeneous charge distribution and water-dominated environment 7 © Y
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within the EDL. Compounding this, classical EDL theory, rooted in mean- ~ _ " 5]
field approximations, further fails to resolve molecular-scale interfacial ; = &
dynamics under battery-operating conditions, limiting mechanistic insights. B e e e
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Herein, we established a multiscale theoretical calculation framework from

single molecular characteristics to interfacial ion distribution, revealing the EDL’s structure and interactions between different ions and molecules,
which helps us understand the parasitic processes in depth. Simulations demonstrate that water dipole and sulfate ion adsorption at the inner Helm-
holtz plane drives severe hydrogen evolution and by-product formation. Guided by these insights, we engineered a “water-poor and anion-expelled”
EDL using 4,1°,6’-trichlorogalactosucrose (TGS) as an electrolyte additive. As a result, ZnllZn symmetric cells with TGS exhibited stable cycling
for over 4700 h under a current density of 1 mA cm™2, while NaV;04-1.5H,0-based full cells kept 90.4% of the initial specific capacity after 800
cycles at 5 A g~ This work highlights the power of multiscale theoretical frameworks to unravel EDL complexities and guide high-performance

ARZB design through integrated theory-experiment approaches.
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1 Introduction

Electrochemical reaction processes, dynamically occurring
at electrochemical interfaces, are the cornerstone of energy
storage and conversion systems, dictating the performance
and stability of devices such as batteries, supercapacitors,
and fuel cells [1-3]. Due to the inner electric field between
the anode and the cathode, or the difference in the equilib-
rium state between the electrode and the bulk electrolyte,
a rearrangement of the solvated ions, solvent molecules,
and adsorbed species takes place on the electrode surface,
which leads to the formation of an electrochemical poten-
tial difference from the surface to the bulk electrolyte [4,
5]. Under this potential difference, an electric double layer
(EDL) forms at the interface between the electrode and
the liquid electrolyte, representing one of the most funda-
mental and critical concepts in electrochemistry [6]. Most
importantly, the properties of the EDL directly govern the
electrochemical reaction processes at the electrode-elec-
trolyte interfaces, thereby influencing the electrochemical
responses and performances of practical devices [7, 8].
The understanding of the EDL structure dates back to the
early nineteenth century [9], beginning with Helmholtz’s
pioneering work in 1879 (Fig. S1). Building on Helmholtz’s
foundational contributions, researchers made significant
advancements, culminating in the well-known Gouy-Chap-
man-Stern (GCS) model [10]. This model divides the EDL
into two layers: (1) the Stern layer (or Helmholtz plane, HP),
which interacts directly with the electrode surface, and (2)
the Gouy—Chapman layer (or diffuse layer, DL), which
extends into the bulk electrolyte. Despite its widespread use
in studying electrode-electrolyte interfaces [11-14], the GCS
model fails to account for the specific adsorption of water
molecules and anions, leading to inaccuracies in describing
the detailed distribution of ions and solvents at the interface.
To address these limitations, further electrochemical studies
were conducted by Grahame [15] and Bockris et al. [16],
ultimately resulting in the detailed Bockris-Devanathan-
Miiller (BDM) model. The BDM model refines the HP by
dividing it into an inner Helmholtz plane (IHP) and an outer
Helmholtz plane (OHP). It reveals that water molecules near
the electrode surface orient directionally due to their dipole
interactions with the surface. As a result, the IHP becomes a
complex mixture of specifically adsorbed ions and oriented
water molecules, while the OHP is populated primarily by
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solvated ions. This insight into the structured arrangement
of water and ions at the interface has profoundly deepened
our understanding of interfacial phenomena in electrochemi-
cal systems.

Aqueous rechargeable zinc batteries (ARZBs), due to
their low cost, high safety, and environmental compatibility,
have emerged as one of the most attractive alternatives for
large-scale energy storage [17-19]. However, the Zn metal
anode is confronted with issues such as rampant dendrite
growth and severe parasitic reactions, which occur at the
anode—electrolyte interface (AEI) and result in low Coulom-
bic efficiency (CE) during the Zn plating/stripping process
[20-22]. As reported by previous research [23], the EDL
structure plays a decisive role in governing ion transport,
charge distribution, and Zn deposition at AEL. On the one
hand, the specific adsorption of ions and water molecules
within IHP induces inhomogeneous charge distribution on
the Zn anode surface, which guides Zn** diffusion to the
prior nucleation sites and promotes the uneven Zn deposi-
tion with dendritic morphology [24, 25]. On the other hand,
the solvating water in the Zn>" shell would migrate from the
bulk electrolyte to the EDL and be pulled across the IHP,
which has a higher reduction potential than free water due
to the positive charge in the cation, making the hydrogen
more reactive [26, 27]. Consequently, these water molecules
would be decomposed to release H, along with the reduction
of Zn>*, which is known as the hydrogen evolution reaction
(HER). Despite the critical role of EDL in stabilizing the Zn
anode, investigating the EDL at AEI notoriously remains
challenging due to the limitations of classical mean-field
descriptions for the classical EDL models [4, 5, 28, 29].
Therefore, there is a pressing need to address key unsolved
questions: What are the specific molecular and ion distri-
butions within the EDL? Are anions specifically adsorbed,
and if so, in which layer? How can the EDL structure be
adjusted in scenarios where side reactions dominate? To
address these complexities, multiscale simulations, particu-
larly those focusing on interfacial dynamics and ion-specific
interactions [30], offer a powerful approach to bridging the
gap between classical theory and experimental observations.

In this study, we present an innovative approach to inves-
tigating EDL by employing a multiscale simulation platform
that integrates quantum chemistry (QC), density functional
theory (DFT), and classical molecular dynamics (CMD),
further validated by characterization techniques and battery
performance (Fig. 1). In detail, the potential adsorption sites
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for molecules on the Zn metal surface could be identified by
QC calculations. Subsequently, DFT-based surface adsorp-
tion calculations are performed to characterize adsorption
states, including specific adsorption sites, orientations,
charge density, and corresponding adsorption energies,
which provide insights into the preferential adsorption of
certain molecules. Finally, CMD simulations are employed
to reveal the dynamic processes of EDL formation and to
model the molecular/ionic distributions near the AEI, offer-
ing a deeper understanding of the surface hydrogen bond
(H-bond) network. Our integrated multiscale simulation
platform provides a unique and comprehensive framework
for interpreting EDL behavior, equipping researchers with
valuable insights for efficient modification of EDL structure
toward a robust Zn anode.

In virtue of this multiscale calculation framework, the
EDL structure in typical zinc sulfate (ZnSO,) aqueous
electrolytes is characterized as follows: the IHP consists of
orderly adsorbed water dipoles and SO,>~ anions, which are
tightly bound to the Zn metal surface. In contrast, the OHP
is predominantly occupied by hydrated complexes, such as
Zn**(H,0) or Zn**(H,0)sS0,*~, which are more loosely
associated with the surface. Beyond the HP, the DL con-
tains ions in equilibrium with the bulk electrolyte, contrib-
uting to the overall ionic concentration near the electrode
interface. The molecular and ionic distributions revealed by
these simulations align with the predictions of the classical
BDM model. However, the presence of abundant free water
molecules and SO,*~ anions within HP leads to undesirable
parasitic reactions. These reactions accelerate the corrosion
of the Zn anode and generate harmful hydroxide ions (OH™)
within the THP [31, 32], resulting in the formation of insu-
lating and uneven by-products, such as Zn,SO,(OH)4-xH,O
(ZSH) [33]. Besides, the deteriorative surface condition fur-
ther exacerbates the tip effect, resulting in uncontrollable Zn
dendrite growth, which degrades the long-term stability of
the Zn anode [25].

To construct a “water-poor and anion-expelled” EDL
structure to stabilize the Zn anode, we investigate the effect
of 4,1°,6’-trichlorogalactosucrose (TGS), a promising and
cost-effective electrolyte additive, as a case study. The
modulation of the EDL structure is intricately influenced
by both substrate architecture and electrolyte composition.
Previous strategies based on substrate architecture engi-
neering, primarily by modifying surface charge density [12,
34], have been proven to be effective in regulating the EDL
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structure and reshaping the interface-localized distribution
of ions, thereby promoting uniform Zn deposition and sup-
pressing parasitic reactions [35-37]. In contrast, electrolyte
design, especially through the incorporation of functional
additives, provides a more versatile, solution-processable,
self-adaptive, and dynamic approach for modulating the
EDL at the electrode-electrolyte interface [31, 38—40]. Our
additive-based EDL engineering strategy distinguishes itself
by enabling targeted regulation of interfacial ion distribu-
tions without altering the electrode structure, thereby achiev-
ing enhanced Zn reversibility via a readily facile approach.
Specifically, TGS is introduced to regulate the distribution
and chemical environment of H,O and SO,>~ within the
HP. The simulation results reveal that TGS spontaneously
adsorbs into the IHP of the EDL, disrupting the aggregation
of H,O molecules and creating a water-poor environment
near the Zn surface. Simultaneously, the surface H-bond
network is reconstructed due to the adsorption of TGS mol-
ecules. Additionally, SO,>~ anions are expelled from the ITHP
and OHP, effectively suppressing the formation of ZHS. By
modifying the EDL with TGS, the overpotential increases,
and the critical nucleation size decreases, promoting uni-
form Zn deposition and reducing dendrite formation. The
efficacy of the modified EDL structure with TGS additive,
given by this multiscale simulation platform, is demon-
strated by the enhanced Zn anode performance. Encourag-
ingly, ZnllICu asymmetric cells using TGS electrolyte addi-
tive achieved stable cycling for over 1100 cycles at a current
density of 1 mA cm™2, with an average CE of 99.49%. In
parallel, ZnllZn symmetric cells maintained a stable opera-
tion lifespan for over 4700 h at 1 mA cm™2, significantly
outperforming cells with conventional ZnSO, electrolytes.
Moreover, full cells incorporating NaV;04-1.5H,0 cathodes
also exhibited superior performance with TGS, achieving a
high capacity retention of 90.4% after 800 cycles at 5 A g~ .

2 Computational Methods

2.1 Quantum Chemistry Calculations

Quantum chemistry calculations were conducted using the
Gaussian 16 software package. Structural optimizations and
frequency calculations for the electrostatic potential (ESP)

were performed at the M06-2X/def2-TZVP level of theory
[41, 42]. To accurately simulate the aqueous environment,
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Unveiling and Regulating the Crucial Structures of EDL
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Fig. 1 Schematic illustration of an advanced multiscale theoretical calculations framework and experimental validations to reveal regulated

EDL structures. Exp. Val. is an abbreviation for experimental validations

the universal solvation model based on density (SMD) was
employed [43], ensuring a precise representation of solvation
effects. The independent gradient model based on Hirshfeld
(IGMH) [44] was employed to investigate the interactions
between TGS and H,O. This model provides an accurate
framework for understanding interactions in chemical sys-
tems [44]. The molecular surface electrostatic potential was
plotted using Multiwfn software [45, 46].

For solvation free energy calculations, geometry opti-
mizations of the studied systems were executed using the
MO06-2X functional with the TZVP basis set. Subsequently,
single-point energy calculations were performed at the
MO06-2X/def2-TZVPP level of theory. The solvation energy
was derived from the single-point energy difference cal-
culated using the M05-2X/6-31G* level of theory, both in
the gas phase and within the SMD solvation model (using
water as the solvent). Based on prior molecular dynamics

© The authors

and experimental studies, the coordination number of Zn**
was constrained to six [47].

The free energy (G) of the solute in a solvent environment
(at 298.15 K and 1 M concentration) was calculated using
the following formula [48]:

Gsolvent Ggas+Gsolution+ 1.89 keal mOI_l

where G, represents the gas-phase free energy of the solute
at 1 atm, G, denotes the free energy of solvation calcu-
lated using the implicit solvent model, and 1.89 kcal mol~!
accounts for the free energy change from 1 atm to 1 M stand-
ard state conditions. The relative free energies (AG) for the
Zn3* solvates, referenced to Zn2+(H20)6, were defined as
follows [48]:

AG = Gz 1,01, 1 — O (1,0),] + 6 = 9Gig,0 = (6 = 0G,
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where x represents the coordination number of Zn%*, with
x=35, 6. This approach facilitates a comprehensive analysis
of the solvation structures and energetics of Zn>* across vari-
ous solvation environments.

The binding energy (E,;,4) is calculated using the follow-
ing formula:

Epina=Eag — Eao — Eg — Egsse

where E 5, E, and Ej represent the total energies of the AB
complex, the isolated species A, and the isolated species B,
respectively. Egqqp denotes the basis set superposition error
(BSSE) correction energy, which is applied using the coun-
terpoise method [49].

2.2 Density Functional Theory Calculations

The Vienna Ab-initio Simulation Package (VASP) software
[50, 51] was utilized to conduct adsorption and HER bar-
rier calculations. The Perdew-Burke-Ernzerhof (PBE) func-
tional within the generalized gradient approximation (GGA)
was employed [52]. The projector augmented-wave (PAW)
method was applied to accurately describe the interactions
between core and valence electrons [53]. An energy cut-
off of 500 eV was set, and a I'-centered k-point mesh grid
of 2x2x 1 was used for geometry optimization. Grimme’s
DFT-D3 method was also implemented to account for van
der Waals (vdW) interactions [54].

The computational model consisted of a Zn (002) surface
slab composed of four Zn atomic layers, with the bottom two
layers fixed. A vacuum layer of 15 A was included to avoid
interactions between periodic images. Atomic positions were
relaxed until the energy converged to less than 1075 eV, and
the maximum force on any atom was reduced to less than
0.02eV A",

The adsorption energy (E, g ) is calculated using the fol-
lowing equation:

EadSA = Eslab/adsorbate - Eslab - Eadsorbate

where E 1 .dsomate 15 the total energy of the slab with the
adsorbate, Eg,, is the energy of the clean slab, and E
is the energy of the isolated adsorbate molecule.

adsorbate

The HER activity was investigated under acidic condi-
tions, incorporating van der Waals interactions to provide an
accurate description of the system. The Gibbs free energy
change (AGy), a critical parameter for characterizing HER
activity, is determined using the following equation [55]:
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where AEy is the change in electronic energy, AE,pg is the
change in zero-point energy, T is the temperature, and ASy
is the change in entropy. This comprehensive approach ena-
bles an accurate assessment of the adsorption properties and
HER activity on the Zn (002) surface, providing valuable
insights into the electrochemical behavior of the system.

2.3 Bulk Classical Molecular Dynamics

Classical molecular dynamics simulations were conducted
using GROMACS 2022.2 [56]. The OPC3 water model was
utilized to simulate water molecules [57], while the Merz
force field was employed for Zn ions [58], as these models
provide optimal accuracy for our system. The general Amber
force field (GAFF) parameters [59] for sulfate ions and TGS
molecules were generated using the Sobtop program, with
atomic charges derived from restrained electrostatic poten-
tial (RESP2) calculations [60] performed by Multiwfn [46].
The simulation system consisted of 4440 water molecules,
160 Zn ions, 160 sulfate anions, and 40 TGS molecules.
Atomic charges of all ions were multiplied by a scale factor
of 0.7 to correct the polarization effect of ions.

The simulation protocol commenced with energy mini-
mization using the steepest descent method to eliminate
any unfavorable interactions. Following this, the system
was gradually heated from 10 to 298.15 K over a period
of 100 ps, followed by an additional 100 ps at the target
temperature to ensure stabilization. Pre-equilibration was
performed under isothermal-isobaric (NPT) conditions at
1 bar for 10 ns. The production run involved a 20 ns simula-
tion under the canonical ensemble (NVT).

A time step of 1 fs was employed for all simulations. In
the NPT simulations, temperature control was achieved
using a V-rescale thermostat [61] with a time constant of
1 ps, while pressure was maintained with the Berendsen
barostat [62] with a time constant of 3 ps. For the NVT
simulations, a Nosé-Hoover thermostat [63, 64] with a time
constant of 1 ps was used. Electrostatic interactions were
calculated using the particle-mesh Ewald (PME) method
[65, 66], with a cutoff distance of 1.2 nm. System visualiza-
tion and analysis of ion association states were carried out
using VMD software [67].
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2.4 Interfacial Classical Molecular Dynamics

An interfacial model, illustrated in Fig. S23, was developed
to investigate the EDL structures. This model comprises two
Zn metal electrodes, an electrolyte containing an equivalent
number of electrolyte species as those employed in bulk
simulations, and a vacuum layer to replicate the interfacial
environment.

The dimensions of the periodic simulation cells in the
x- and y-directions are 55.12 Ax55.69 A for ZS electrolyte
and 55.28 A x55.85 A for ZS/TGS electrolyte, as recorded
in Table S3. The electrolyte thickness separating the two Zn
metal anodes is approximately 50.0 A; specifically, for the
ZS electrolyte, the thickness is 49.96 A, while for the ZS/
TGS electrolyte, it measures 53.64 A. These values were
obtained through equilibration simulations, with the detailed
methodology illustrated in Fig. S22. The selected thickness
is sufficiently substantial to ensure the manifestation of bulk
electrolyte behavior in the central region of the simulation
cell [68].

In these simulations, the Zn anodes were fixed in position,
and the Lennard-Jones parameters for the Zn atoms were
defined as 6=2.44 A and £=3.022 kJ mol~!, which have
been shown to provide accurate representations of the inter-
facial interactions [32]. In the subsequent calculations, the
left Zn anode is assigned a positive charge, while the right
anode is negatively charged, in accordance with considera-
tions of the potential of zero charge (PZC).

For the force field parameters governing the molecules
and ions (Zn2+, SO42_, H,0, and TGS), the same param-
eters as those utilized in the bulk electrolyte simulations
were employed to ensure consistency across the simula-
tions. Following the pre-equilibration simulations of the
bulk electrolyte, Zn (002)-electrolyte-Zn (002) structures
were constructed. Energy minimizations were performed
using the steepest descent method to optimize the system
configuration. Subsequently, the system was subjected to a
heating protocol, gradually increasing the temperature from
10 to 600 K over a period of approximately 100 ps. This was
followed by an additional equilibration period of 100 ps at
the target temperature. The relatively high temperature of
600 K was selected to facilitate the formation of uniform
and saturated EDL structures within the constraints of the
limited simulation time [69].

For the interface simulations, pre-equilibration was con-
ducted under NPT conditions at a pressure of 1 bar for a
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duration of 10 ns. The production run consisted of a 20 ns
simulation performed under the NVT, employing the same
thermostat and barostat configurations as those used in the
bulk electrolyte simulations. 2D H,O number density distri-
bution on the Zn (002) surface was analyzed by the Density
Calculator program [70].

3 Results and Discussion

3.1 Solvation Structure and Adsorption Characteristics
Investigations

To modulate the EDL structure, TGS was selected as an
electrolyte additive owing to its abundant polar functional
groups, namely multiple hydroxyl (-OH) and chlorine (—Cl)
moieties, and its relatively large molecular size (Fig. S2).
These structural features are expected to promote the sponta-
neous adsorption of TGS onto the Zn metal surface, where it
can exert a pronounced steric hindrance effect [71-73]. This
interaction is anticipated to significantly influence the inter-
facial configuration and disrupt the local H-bond network.
Furthermore, TGS serves as a model additive for the con-
struction of a transferable multiscale theoretical platform,
enabling the systematic regulation of EDL structures in elec-
trochemical systems. Specifically, 2 M ZnSO, (ZS) electro-
lytes with different concentrations of TGS (10/50/100 mM)
were used to assemble ZnllZn symmetric cells. Under the
galvanostatic condition of 1 mA cm~2and 1 mAh cm™2, the
sample with 50 mM TGS exhibits an exceptionally stable
cycle life exceeding 4700 h (Fig. S3). In comparison, the cell
containing 10 mM TGS demonstrates an extended lifespan
of approximately 4060 h, while it encounters a soft short
circuit at around 3860 h [74]. Moreover, when the concen-
tration of TGS is further increased to 100 mM, the cycling
lifespan is markedly shortened to approximately 500 h. This
degradation in performance is primarily attributed to a pro-
nounced decrease in bulk ionic conductivity and a substan-
tial increase in interfacial impedance, as evidenced by Figs.
S4 and S5. Based on these observations, an optimized TGS
concentration of 50 mM in ZS (ZS/TGS) was selected for
further investigation. We first explored the bulk electrolyte
solvation structures using CMD simulations, as outlined
in Figs. S6 and S7. Fig. 2a presents the radial distribution
functions (RDFs) and coordination numbers (CNs) for Zn>*
in the ZS/TGS electrolyte. Notably, negligible changes in
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RDFs and CNs are observed compared to that of the ZS elec-
trolyte (Fig. S8), indicating that TGS does not alter the pri-
mary solvation shell of Zn>*. Specifically, the predominant
solvation structures remain ~75% anJr(HzO)6 and ~25%
Zn**(H,0)sS0,*” complexes in Fig. S9. The absence of
TGS in the solvation shell can be rationalized by examining
the relative free energy of Zn>* solvation complexes based
on ligand field effects (Fig. 2b) [48]. The formation of a
Zn**(H,0)sTGS complex is associated with a higher rela-
tive free energy, calculated to be 6.91 kcal mol™! compared
with the much lower free energy of —4.24 kcal mol~! of
Zn**(H,0)sS0,*~ complex. This significant difference in
relative free energy compared with Zn2+(H20)6 indicates
that the sulfate ion (SO42_) is more easily involved in the
first solvation shell of Zn* ion [47, 75]. Further corrobora-
tion of the minimal impact of TGS on the solvation structure
is provided by the Raman spectra and nuclear magnetic reso-
nance (NMR) results, as shown in Figs. 2¢ and S10. There
is nearly no chemical shift for the stretching vibrations of
O-H and SO,*™ and the characteristic peaks of *H, indicat-
ing that TGS would not change the coordination environ-
ment of Zn%* ions, which is consistent with the results in the
Fourier transform infrared (FTIR) spectra (Fig. S11) and the
theoretical analysis above. In spite of the conclusion drawn
above that TGS does not significantly affect the solvation
structures of Zn”", noticeable molecular aggregation of TGS
was detected (Fig. S7b), which may impact the ion diffu-
sion process [76]. As expected, the diffusion coefficients of
Zn**, S0,?~, and H,0 in the bulk electrolyte decreased upon
the introduction of TGS, as revealed by the mean squared
displacement (MSD) analysis in Fig. S12, demonstrating
the significant steric hindrance effect of aggregated TGS
molecules. Notably, these findings are consistent with the
previously observed decline in bulk ionic conductivity after
introducing the TGS. Hereto, it is reasonable to conjecture
that the TGS molecule may work on the surface because of
the non-negligible steric hindrance effect.

To elucidate the molecular characteristics of TGS, we cal-
culated its ESP using QC methods. Figs. 2d and S13 illus-
trate the ESP mappings of TGS and H,O molecules, where
the ESP minima regions (blue points) located near the atoms
with negative ESP values (blue areas), such as oxygen and
chlorine atoms, could be identified as nucleophilic (poten-
tial adsorption) sites [77-79]. The ESP extrema of specific
potential adsorption sites are recorded in Table S1. Sub-
sequently, DFT calculations were performed to investigate
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various adsorption configurations on the Zn (002) surface,
which was selected due to its lowest surface energy, indi-
cating it as the most thermodynamically stable facet [77].
The adsorption states were categorized as ‘parallel’, ‘angle’,
and ‘vertical’, corresponding to the molecular orientations
parallel to, at an angle with respect to, or perpendicular to
the surface, respectively (Fig. 2e, f). The results reveal that
the TGS molecule reaches the most stable adsorption state
when it is parallel to the Zn (002) surface, as indicated by the
more negative adsorption energies (~—0.97 eV) and smaller
adsorption angles (~25°) compared with other configura-
tions (Table S2). Moreover, the adsorption energies of all
TGS configurations were found to be higher than those of
H,O at the TOP, Bridge, HCP, and FCC sites (Figs. 2f and
S14), highlighting the stronger binding affinity of TGS mol-
ecules to the Zn metal surface. Noticeably, the adsorption
sites of TGS and H,O molecules are both consistent with
the predictions of QC calculations before (mark potential
adsorption sites with blue dot rings).

With the revelation of the specific adsorption behav-
ior and conditions for the TGS and H,O molecules on the
Zn metal surface by QC and DFT calculations, we further
performed spectroscopy analyses to verify the interaction
between the TGS molecule and the Zn anode. Fig. 2g pre-
sents the FTIR spectra of the Zn anode soaked in the ZS/
TGS electrolyte for 3 days. The adsorbed peaks at ~2900,
~1000, and 700—750 cm™! correspond to the stretching
vibrations of C—H, C—0O, and C—Cl from the TGS molecule,
respectively [80], explicitly indicating the spontaneous
adsorption of TGS on the Zn anode in aqueous solutions.
The X-ray photoelectron spectroscopy (XPS) results col-
lected in Figs. 2h, S15, and S16 provide additional confir-
mation of TGS adsorption. For the Zn anode soaked in ZS/
TGS electrolytes for 3 days (Fig. 2h), distinct Cl peaks are
observed at the binding energies of 199.7 eV (CI 2p5,) and
201.2 eV (Cl 2p,,) [81], elaborating the presence of chlorine
atoms bonded to sp2 carbons. In addition, the introduction of
TGS molecules reduces the contact angle of the electrolyte
on the Zn foil from 78.3° to 67.4° (Fig. S17), signifying a
marked improvement in surface wettability and the strong
adsorption capability of TGS molecules on the Zn surface
[82, 83]. Of note, the surface charge state of the Zn anode
is identified by average differential areal capacity (C), as
shown in Figs. 2i, S18 and S19. The Cis closely relevant to
the EDL structure [84, 85], which can be derived from the
following equation:
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i=C-v

where i is the average current density and v is the corre-
sponding scan rate of the cyclic voltammetry (CV) curve.
The introduction of TGS at varying concentrations leads to
a notable decrease in C resulting in a water-poor EDL [85,
86]. Specifically, the capacitance drops significantly from
2.16x 10~* F cm™2 for the ZS electrolyte to 5.16x 10™> F
cm~2 upon the addition of 50 mM TGS. However, further
increase in the TGS concentration from 50 to 100 mM results
in only a marginal change in capacitance (from 5.16x 107>
to 4.98 x 107 F cm™2), indicating that the adsorption of Zn
surface becomes saturated with 50 mM TGS additive. More-
over, the decrease in zeta potential indicates a less negatively
charged Zn surface with the presence of TGS (Fig. S20),
likely driven by the adsorption of TGS molecules and their
influence on the surface charge distribution or potential. On
this basis, the charge density difference (CDD) distribution
plots provide deeper insights into the adsorption characteris-
tics of TGS and H,O on the Zn (002) surface, as showcased
in Figs. 2i and S21. Much more dramatic charge exchanges
between TGS and Zn (002) surface than those of H,O are
witnessed, verifying the stronger chemisorption and surface
charge transfer.

While QC and DFT calculations, supported by experi-
mental results, have successfully elucidated the specific
adsorption behavior of TGS molecules and proved the reor-
ganization of EDL, inherent limitations are inescapable with
regard to these approaches [87]. Specifically, experimental
techniques provide only a macroscopic perspective of the
AEI, whereas QC and DFT calculations are confined to the
analysis of individual TGS and H,0 molecules, overlook-
ing the effects of molecular aggregation and orientation dis-
tribution [76]. Consequently, the EDL portrayed by these
methods is incomplete. To overcome this limitation, CMD
simulations were harnessed by the constant charge method
(CCM) [88]. This approach endowed us with a systematic
perspective on the interfacial behavior of TGS and H,O mol-
ecules on the Zn metal surface under realistic electrolyte
conditions. By leveraging this computational framework, we
aim to provide a comprehensive clarification of the structural
and functional intricacies of the EDL and unravel the role of
TGS additives in modulating interfacial properties.

3.2 Dissection of the Electric Double Layers

Firstly, Fig. 3a—d illustrates the EDL structures of the Zn
(002) surface in the ZS electrolyte, analyzed through CMD
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simulations (detailed simulation steps and structures are
shown in Figs. S22 and S23, Table S3). Fig. 3a shows a
snapshot from CMD simulations, where the interfacial
region exhibits distinct layering of H,O molecules and
SO,>” ions near the Zn surface. This interfacial structure is
quantitatively characterized in Fig. 3b, which presents the
number density profiles of H,0 molecules and SO,>" ions
as a function of the distance from the Zn surface. Accord-
ingly, there are three interfacial zones based on the classi-
cal BDM model: (I) H,0 molecules and partial SO,*~ ions
directly adsorbed on the Zn surface (IHP, blue zone); (II)
dominated by loosely associated water and SO,*~ ions
(OHP, orange zone); and (III) the diffuse layer (DL, yel-
low zone), where the ion concentrations gradually recover
back to that of the bulk electrolyte. In the IHP, the tight and
ordered adsorption of water molecules onto the Zn surface
results in a pronounced first peak in the H,O number density,
reaching its maximum value. This indicates strong electro-
static interactions between the H,O dipoles and Zn metal
surface, leading to a well-organized interfacial water layer
(Fig. S24). Moving into the OHP, the solvated Zn2+(H20)6
ions disrupt the orderliness of water molecules, resulting in
a more loosely bound configuration, as demonstrated by a
rapid decline in the H,O number density. Concurrently, the
larger OHP region allows more SO,>~ ions to penetrate and
adsorb onto the Zn surface. As a result, the number density
of SO,>~ ions exhibits a sharp increase from IHP to OHP
and reaches a first peak in the number density profiles. At
the boundary between the OHP and the DL, electrostatic
interactions between H,O molecules and SO,>~ ions lead
to a secondary peak in the number density profiles for both
species [89, 90], corresponding to a region where water mol-
ecules and SO,*~ ions achieve a local maximum in their
spatial distributions due to mutual electrostatic stabilization.
In the DL, the concentration of H,O molecules gradually
decreases as it transitions into the bulk electrolyte, where the
structure becomes ordered. Similarly, the SO42_ ion concen-
tration experiences slight fluctuations, ultimately reaching
the homogeneous bulk electrolyte value. Further insights
into the spatial arrangement of interfacial water are provided
by the 2D number density distribution of H,O molecules. As
shown in Fig. 3c, a mass of water molecules is uniformly
distributed across the Zn metal surface in the ZS electrolyte,
indicating the isotropic water alignment on the Zn metal
surface (Fig. S24). A conceptual summary of these find-
ings is presented in Fig. 3d. In traditional ZS electrolytes,
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a significant accumulation of ordered H,O molecules and
SO,?" anions occurs in the THP and forms a water-rich and
anion-adsorbed EDL structure, dramatically promoting
undesirable side reactions, including HER and the formation
of by-products such as ZSH. As SO,>~ anions adsorb, they
bring the negative charge closer to the electrode surface. In
classical GCS models, the potential at the IHP is usually
assumed to decrease relatively smoothly from the electrode
potential to that of the bulk solution. However, the adsorbed
anions create localized regions of high charge density. This
can cause an immediate drop (or more pronounced “step”)
in potential near the IHP because the electrode now faces a
layer of fixed negative charges based on the BDM model (as
depicted in Fig. S1). Therefore, the presence of specifically
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adsorbed anions can produce a more abrupt change in poten-
tial, often a steeper initial decrease followed by a more
gradual decay through the diffuse layer, which could lead to
non-uniform Zn* ion depositions [75, 91].

By contrast, Fig. 3e-h highlights the impact of TGS mol-
ecule adsorption on the Zn metal surface, leading to a recon-
structed EDL and the creation of a water-poor interfacial
environment. Figs. 3e and S25 demonstrate the adsorption
and aggregation of TGS molecules in IHP and OHP. This
structural transformation is quantitatively depicted in Fig. 3f.
Due to the robust adsorption and aggregation of TGS on the
Zn surface, the number density of H,O molecules in the IHP
is significantly reduced. Similarly, the repulsion of SO,>~ ions
away from the interfacial region leads to their lower density
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in the HP. The 2D number density distribution of water
molecules, as shown in Fig. 3g, further highlights this TGS
molecular aggregation effect. Compared to the relatively uni-
form distribution observed in the ZS system (Fig. 3c), the
TGS-modified interface exhibits sparse and localized H,O
adsorption, confirming the broken water layer structure and
surface H-bond network [92]. To further evaluate molecular
coverage, the surface coverage (6) of TGS is defined by:

!/
"0

0=1-
y.0

where ny; o and n’,  represent the relative molecule number
2 H,O

of H,O on the surface before and after TGS adsorption. The
6 of TGS molecules reached 94.44%, indicating highly uni-
form adsorptions on the surface in a parallel configuration,
which is consistent with the adsorption states predicted by
previous DFT calculations. The schematic diagram in
Fig. 3h summarizes the reconstructed EDL structure in the
TGS-modified electrolyte. According to the Derjaguin-Lan-
dau-Verwey-Overbeek (DLVO) theory [93-95], the interac-
tions between Zn>* ion deposits in aqueous electrolytes are
determined by the interplay between vdW attractive forces
and the electrostatic repulsion arising from the EDL (Fig.
S$26). In ZS electrolytes, the strong EDL repulsion, driven
by SO42_ counterions near the HP, leads to scattered and
loose platelet-like Zn deposition [96]. The introduction of
TGS molecules effectively repels SO,>~ ions from the HP,
reducing the surface charge density and redistributing the
potential drop within the EDL (Fig. S27), which is consistent
with the decrease in zeta potential. In other words, the
energy barrier of the Zn** ion deposit could be reduced by
lowering the net charges of particles. Furthermore, TGS flat-
tens the potential profile and weakens the electrostatic repul-
sion between Zn>* ion deposits, allowing the vdW force to
dominate, which promotes dense and coherent deposition
processes. These structural and electrostatic modifications
improve the morphology of Zn** ion deposits, as discussed
in the later section.

As is well known, the activity of H,O molecules primar-
ily depends on the intensity of the H-bond network formed
between the H and O atoms of adjacent H,O and directly
affects the side reactions of H,O decomposition [97].
Fig. 3i quantifies the average number of H-bonds per water
molecule on the Zn surface for both ZS and ZS/TGS elec-
trolytes. In the presence of TGS, the number of H-bonds
per water decreases significantly, dropping from 2.1 to 1.1
in the IHP and from 2.6 to 1.7 in the OHP, which reflects
the disruption of the H-bond network at the EDL caused by
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TGS adsorption. This result is also observed from surface
structure snapshots (Fig. S28), breaking the continuous
H-bond network in the ZS/TGS electrolyte. Fig. 3j high-
lights that those electron-rich atoms (such as O and Cl)
from the TGS molecule would effectively participate in the
IHP and OHP region and modify the EDL structure, due to
their strong affinity to the Zn surface (Fig. 2e). At the same
time, partial O atoms in TGS could interact with water mol-
ecules to avoid them in the HP. To further investigate the
interactions between TGS and H,O molecules, ESP map-
ping of the TGS +H,0O system was performed, as shown
in Fig. 3k. The ESP mapping reveals intensive interactions
between TGS and H,O molecules. Specifically, the nucleo-
philic site of TGS (three oxygen atoms) can bind well to the
electrophilic site of H,O molecules (two hydrogen atoms)
and further change the electrostatic potential at the binding
site. This is further supported by the binding energy calcu-
lations (Fig. S29), as shown that the TGS-H,O interaction
(—9.90 kcal mol™") is much stronger than that of H,0-H,0
(= 5.14 kcal mol™"). Moreover, the IGMH analysis is con-
ducted to provide deeper insight into TGS-H,O interactions
(Figs. 21 and S30) [44]. The IGMH visualization identifies
vdW interactions and weak H-bonds as the key stabilizing
factors between TGS and H,O molecules [98]. As a result,
the complex interactions between TGS and H,0 molecules
significantly break the H-bond network of H,O at the inter-
face and reduce the activity of free water, thus reconstruct-
ing a water-poor EDL with inhibited side reactions for the
Zn anode.

To account for the potential-dependent behavior of the
Zn metal anode, the Zn (002) surface was polarized from
the PZC [99]. Charge distribution on the Zn (002) surface
under varying polarization conditions was calculated using
joint density functional theory (JDFT) [100, 101], as imple-
mented in the JDFTx software [102]. Fig. S31 illustrates
the variation in charge density on the Zn (002) surface as
a function of potential relative to the PZC, serving as a
foundation for understanding the interfacial behavior under
different polarization conditions [31]. When the Zn surface
potential is polarized to+ 0.5 and — 0.5 V from the PZC,
distinct adsorption phenomena are observed, as illustrated
in Figs. S32-S35. Specifically, TGS molecules become con-
tinuously adsorbed and enriched on the Zn (002) surface
under both positive and negative polarization conditions
(Fig. S28). Figs. S33 and S34 also confirm the reduction
in H,O and SO,*~ concentrations at the EDL, highlighting
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the role of TGS in mitigating the undesired side reactions.
Further analysis of the H-bond network on the Zn surface
under different polarization conditions is also performed
(Fig. S35). In ZS electrolytes, the average number of sur-
face H-bonds displays distinct characteristics based on
the applied potential. At+0.5 V vs. PZC, the first peak
of the H-bond count is lower than the bulk H-bond value,
consistent with observations at the PZC situation, which
reflects the relatively loose H,O-H,O interactions near the
positively charged surface. Conversely, at— 0.5 V vs. PZC,
the first peak of the H-bond count is higher than the bulk
H-bond value. This increase results from the accumulation
of negative charge, which promotes the ordered and com-
pact arrangement of water molecules and enhances H-bond
density. To be noted, the adsorption of TGS molecules on
both sides can effectively reduce the number of H-bonds
on the surface and change the local EDL environment.
At—0.5 V vs. PZC, the first peak of the H-bond count is
significantly reduced after introducing TGS molecules,
which is lower than the bulk H-bond numbers.

In summary, the CMD simulations and subsequent multi-
dimensional analyses reveal that the introduction of TGS into
the ZS electrolyte leads to significant reconstruction of the
EDL at the Zn metal surface. TGS molecules preferentially
adsorb onto the Zn surface, displacing H,O molecules and
SO,>~ anions. This adsorption reduces surface H-bond and
redistributes the potential drop, creating a water-poor and
anion-expelled EDL environment that suppresses parasitic
reactions and enhances the stability and performance of the
Zn anode. Our coupled multiscale simulation platform pro-
vides a clear depiction of the EDL structure, ion/molecular
distribution, and interfacial behaviors, seamlessly integrating
QC, DFT, and CMD. This approach offers valuable insights
into strategies for EDL regulation theoretically. Subsequent
experimental results will further validate the accuracy and
predictive phenomena of these theoretical calculations.

3.3 Evaluation of Anti-Corrosion and Deposition
Kinetics of the Zn Anode

Based on the modified EDL structure with the addition of
TGS, the corrosion resistance and deposition kinetics of
the Zn anode were evaluated experimentally (Fig. 4). The
scanning electron microscope (SEM) images and X-ray
diffraction (XRD) patterns of the Zn foil soaked in ZS
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electrolyte for 3 days present obvious corrosion, character-
ized by randomly distributed irregular ZSH by-products and
rough surface morphology, indicative of severe side reac-
tions (Figs. 4a and S36) [103]. In sharp contrast, the Zn
anode soaked in ZS/TGS electrolyte for the same condition
exhibits a smoother and more uniform surface, without the
distinct formation of by-products, confirming enhanced anti-
corrosion of the Zn anode conferred by the TGS additive.
Accordingly, the Tafel plots show a much lower corrosion
current density for the ZS/TGS electrolyte compared to the
ZS electrolyte (0.86 vs. 4.64 mA cm™~2, Fig. 4b). The linear
sweep voltammetry (LSV) curves also take on a signifi-
cantly reduced current density under the negative polariza-
tion region (Fig. 4c), which is attributed to the amplified
energy barrier of HER after TGS adsorption (from 0.69 to
0.84 eV) based on DFT calculations (Fig. 4d). These results
demonstrate that a water-poor and anion-expelled EDL con-
structed by adsorbed TGS would slow down the HER rate
and enhance the stability of the Zn anode in a mild/acid
aqueous system.

The chronoamperometry (CA) tests are performed to
probe into the effect of the modified EDL on Zn?* ion
deposition behavior. Different from the random 2D dif-
fusion in the ZS electrolyte, the ZS/TGS electrolyte pro-
motes a uniform 3D diffusion of Zn>* ions at the inter-
face [72, 104], effectively preventing Zn dendritic growth
and ensuring a more stable Zn>* ion deposition process
(Fig. 4e). As pointed out in the previous theoretical calcu-
lations, TGS will inevitably incur a strong steric hindrance
effect on the surface, which is confirmed by the enlarged
charge transfer resistance (R.) in the electrochemical
impedance spectroscopy (EIS) spectra shown in Fig. S5
[71-73]. Additionally, the CV curves of ZnllCu half cells
demonstrate that the ZS/TGS electrolyte results in a post-
poned onset potential of Zn>* ion deposition (Fig. 4f),
indicating the significant polarization on the Zn anode.
Furthermore, the activation energy (E,) of the ZS/TGS
electrolyte (83.35 kJ mol™') is slightly higher than that of
the ZS electrolyte (77.29 kJ mol~!) in Figs. S37 and S38,
indicating that the presence of adsorbed TGS within the
EDL slows Zn?* diffusion at the Zn-electrolyte interface
and moderates the Zn>* deposition kinetics [105, 106].
This regulated ion transport promotes a more uniform
Zn** flux, leading to dense and homogeneous Zn depo-
sition. These findings are consistent with the increased
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interfacial polarization observed in the presence of the
TGS additive.

The electrodeposition morphology of Zn in ZS and ZS/
TGS electrolytes was systematically analyzed under vary-
ing current densities and areal capacities, as depicted in
Fig. 4g, h. The overpotential (#-) governing the electro-
deposition process is expressed as [91]:

2RT . .
— Injc

=¢, +
nc = ¢, F

where ¢, represents the potential of the diffuse layer, R is
the ideal gas constant, T is the absolute temperature, F is

the Faraday constant, and j is the exchange current density.
The repulsion of SO,*~ ions in HP leads to a redistribution
of anions further into the diffuse layer, effectively lowering
the potential gradient in this region. As a result, the weaker
potential drop in HP gives rise to an increase in the potential
of the diffuse layer (¢,) in Fig. S27. The increased ¢, brings
about a higher overpotential, which is beneficial to uniform
and compact Zn>* ion deposition as it reduces the critical
nucleation size and increases nucleation density [71].

At a current density of 1 mA cm™2 and an areal capacity
of 1 mAh cm™2, the electrodeposition morphology in ZS
electrolyte exhibits a rough and porous mossy structure,
indicative of severe HER and dendrite growth (Fig. 4g)
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[107]. The morphology of initial Zn nucleation critically
influences the subsequent growth behavior, playing a piv-
otal role in dendrite formation and ultimately affecting
the long-term cycling stability and lifespan of the battery
[108, 109]. This irregular morphology can compromise
the stability of the Zn anode and lead to a rapid short cir-
cuit because of strong EDL repulsion according to DLVO
theory. In contrast, the Zn anode in the ZS/TGS electro-
lyte takes on a much smoother and more uniform surficial
morphology under identical conditions, as exhibited due
to the vdW force domination. At a higher current density
of 4 mA cm~2 and an areal capacity of 2 mAh cm™2, the
Zn>* ion deposits in the ZS electrolyte display pronounced
dendritic structures with large sharp-edge plates, while
remaining smooth and compact in the ZS/TGS electro-
lyte, with a well-defined and uniform crystalline structure
(Fig. 4h). Additional electrodeposition morphologies at
higher current densities and areal capacities (5 mA cm™2,
2.5 mAh cm™2; 5 mA cm ™2, 5 mAh cm_z) are presented in
Figs. S39 and S40, which reveal similar trends. Accord-
ingly, it is reasonable to claim that incorporating TGS
into the ZS electrolyte moderates the Zn>* ion deposition
kinetics, leading to a homogeneous and dense growth of
electrodeposition.

3.4 Modified EDL Induced Superior Electrochemical
Performance

We then assessed the reversibility of the Zn anode in ZS
and ZS/TGS electrolytes by measuring the CE in ZnllCu
asymmetric cells. As shown in Fig. 5a, at a current density
of 1 mA cm~?2 and an areal capacity of 0.5 mAh cm™2, the
ZnlICu cell with ZS electrolyte operates only 200 cycles and
then reaches a short circuit. In sharp contrast, the cell uti-
lizing ZS/TGS electrolyte exhibits stable cycling for over
1100 cycles, achieving an impressive average CE of 99.49%.
Even at a higher current density of 4 mA cm™2 and an areal
capacity of 1 mAh cm™, the cell with ZS/TGS electrolyte
can still stably cycle for up to 700 cycles with a superior
CE of 99.59% (Fig. 5b), observably outperforming that of
the cell with ZS electrolyte. The promotion in CE embod-
ies optimized Zn plating/stripping reversibility achieved by
TGS-regulated EDL structure. To further verify the long-
term cycling stability of the Zn anode, we perform the gal-
vanostatic charge/discharge tests of ZnllZn symmetric cells
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in both electrolytes. As shown in Fig. 5c, the Zn anode in
the ZS/TGS electrolyte demonstrates significantly prolonged
cycling stability for over 4700 h compared to only 140 h in
the ZS electrolyte, under a current density of 1 mA cm™2 and
an areal capacity of 1 mAh cm™2. To gain deeper insights
into the morphological evolution of the Zn anode, the Zn
anodes cycled for 10, 20, and 30 cycles in ZS and ZS/TGS
electrolytes at the same condition are characterized by SEM
(Fig. 5d). The Zn anode cycled in ZS/TGS electrolyte deliv-
ers a uniform and smooth Zn plating/stripping process, fur-
ther confirming the effect of EDL reconstruction in facilitat-
ing the homogeneous Zn>* ion deposition by amplifying the
overpotential (~100 mV at 1 mA cm~2 and 1 mAh cm™?).
However, in the ZS electrolyte, the cycled Zn anode exhibits
non-uniform plating/stripping, inducing noticeable voids and
randomly distributed Zn sheets. Moreover, similar results
are shared by the Zn anodes cycled under other conditions,
as presented in Figs. S41-S43. The XRD patterns in Fig.
S44 further confirm the formation of ZSH after 30 cycles
at 1 mA cm™2 and 1 mAh cm™2 in the ZS electrolyte. Opti-
cal photographs of the ZS electrolyte post-cycling reveal
noticeable dead Zn, while the ZS/TGS electrolyte remains
transparent (Fig. S44b, c). At a higher current density of
4 mA cm~2, the Zn anode in the ZS/TGS electrolyte still
operates stably for up to 1100 h, approximately six times
longer than that in the ZS electrolyte (~ 180 h, Fig. Se).
Additional long-term cycling tests at various conditions
(4 mA cm~2 and 2 mAh cm™2; 5 mA cm™2 and 1 mAh cm™)
also demonstrate the superior performance of the ZS/TGS
electrolyte (Fig. S45). To evaluate the rate performance of
symmetric cells, ZnllZn cells were tested at current densi-
ties ranging from 0.5 to 10 mA cm™2, as shown in Fig. S$46.
As expected, the cell using the ZS electrolyte experienced
a short circuit when the current density was returned to
0.5 mA cm™2. In contrast, the cell with the ZS/TGS electro-
lyte maintained stable cycling across all current densities,
with a noticeably increased overpotential compared to the
ZS electrolyte. In the under-limiting current region, the cells
can operate safely without reaching the limit of mass trans-
fer. In this regime, nucleation theory plays a dominant role,
higher overpotential, along with the increased interfacial
impedance observed for the ZS/TGS electrolyte, facilitates
more stable Zn deposition and suppresses side reactions [71,
110]. Impressively, under a harsh circumstance of 50% Zn
utilization rate (depth of discharge, DOD,,), the ZnllZn sym-
metric cell with ZS/TGS electrolyte shows extended lifespan

https://doi.org/10.1007/s40820-025-01915-w
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to 260 h (Fig. 5f). In comparison, the Zn anode in the ZS
electrolyte suffers from uneven nucleation and uncontrolled
Zn/Zn* redox kinetics, accompanied by serious side reac-
tions, leading to rapid active Zn consumption and perfora-
tion of the electrode, ultimately causing the cell to reach an
open circuit within just 15 h. Finally, the cumulative plating
capacity (CPC) at various current densities, 2.35 Ah cm™>
over 4700 h at 1 mA cm™2, 2.2 Ah cm™ over 1100 h at
4 mA cm™2, and 1.65 Ah cm™2 over 660 h at 5 mA cm™2,
demonstrates the superior performance of our system, sur-
passing most previously reported additive-based strategies
(Fig. S47).

To assess the practicality of regulating the EDL in real-
world applications, ZnlINaV;0ge1.5H,0 (NVO) full cells
were assembled. The SEM image and XRD pattern of the
NVO powders (Figs. S48 and S49) confirm a nanobelt mor-
phology and a highly crystalline phase, which can be indexed
to the P2,/m space group (PDF#16-0601). EIS results for
ZnlINVO full cells (Fig. S50) reveal a charge transfer resist-
ance comparable to that observed in symmetric cells, which
is consistent with the previous analysis of interfacial reac-
tion kinetics. The CV profiles of ZnlINVO full cells with

© The authors

different electrolytes (Fig. 6a) reveal similar redox peaks,
indicating that TGS primarily functions on the electrode
surface without directly participating in the redox reactions
of the NVO cathode during charge and discharge processes.
This confirms that the improvements in cell performance
originate from the regulated EDL rather than changes in the
cathode redox chemistry. Fig. 6b showcases the rate per-
formance of the full cells. At low current densities (0.2 and
0.3 A g1, both ZS and ZS/TGS cells exhibit comparable
capacities, as side reactions associated with vanadium dis-
solution from the cathode remain negligible in both sys-
tems. However, as cycling progresses under higher current
densities (0.5-5 A g7!), the ZS electrolyte suffers from per-
sistent side reactions that progressively degrade the NVO
cathode, leading to diminished capacity and inferior rate
performance. In contrast, the ZS/TGS full cell consistently
delivers higher capacity and superior rate capability, high-
lighting the effectiveness of the TGS-modulated interfacial
environment. This enhancement is attributed to the prefer-
ential adsorption of TGS on both the anode and cathode sur-
faces, where it facilitates the formation of a “water-poor and
anion-expelled” EDL. By suppressing water insertion and

https://doi.org/10.1007/s40820-025-01915-w
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anion accumulation at the interface, vanadium dissolution is
significantly mitigated, thereby preventing the formation of
inactive by-products and enabling more stable electrochemi-
cal kinetics [111, 112]. Long-term cycling performance at
1 A g7! (Fig. 6¢) highlights the differences between the ZS
and ZS/TGS systems. The ZS-based full cell undergoes an
activation process within the first 2 cycles, reaching a peak
specific capacity of 226 mAh g~! before rapidly declining
to 25.6% of the initial capacity after 400 cycles due to the
severe side reactions at low rates [20]. In contrast, the ZS/
TGS-based full cell retains 70.6% of its original capacity
(168 mAh g~!) after 400 cycles, manifesting the stability
provided by the TGS adsorption-regulated EDL structure.
At a higher rate of 5 A g~! (Fig. 6d), a longer activation
process, typically spanning 5 to 30 cycles, is required. This
behavior is attributed to intensify interfacial polarization,
elevated Zn>* flux, and increased overpotential, all of which
collectively delay the formation of a stable EDL and uniform
Zn deposition. Nevertheless, the ZS/TGS-based full cell
demonstrates excellent long-term stability, retaining 90.4%
of its capacity and delivering 141 mAh g~! even after 800
cycles. By contrast, the ZS-based cell suffers from a dras-
tic decline in specific capacity to 46.1% within 800 cycles,
primarily due to irreversible capacity loss caused by severe
side reactions. To evaluate practical applicability, a single-
layer ZnlINVO pouch cell with cathode mass loadings of

20 mg cm™>

was assembled, as illustrated in Fig. S51. The
0.24 Ah single-layer pouch cell utilizing the TGS-contain-
ing electrolyte demonstrates an extended cycling lifespan
of over 50 cycles at a small current density of 0.1 A g~!

(2 mA cm™2), retaining 71.8% of its initial capacity.

4 Conclusions

This study establishes a multiscale computational frame-
work integrating QC, DFT, and CMD to comprehensively
elucidate the interfacial mechanisms governing the stability
and reversibility of Zn anodes in ARZBs. By synergistically
bridging ab initio molecular-level insights with experimental
validation, this framework resolves the dynamic evolution
of the EDL under operational conditions, offering unprec-
edented clarity on the interplay between interfacial chemis-
try and electrochemical performance. QC simulations iden-
tified critical adsorption sites on Zn surfaces, while DFT
calculations quantified the energetics and configurations of

| SHANGHAI JIAO TONG UNIVERSITY PRESS

adsorbate interactions, revealing the preferential adsorp-
tion of TGS molecules. CMD simulations further uncov-
ered the EDL’s structural reorganization under realistic
electrolyte conditions, demonstrating how TGS disrupts
the native water-rich and anion-dense interfacial environ-
ment. The combined theoretical analyses established that
TGS adsorption induces steric hindrance and site-specific
interactions, effectively expelling free water and anions
from the EDL. This restructuring suppresses parasitic reac-
tions (e.g., hydrogen evolution, by-product formation) and
promotes uniform Zn>" ion deposition by homogenizing
interfacial ion flux. Experimental validation corroborated
these theoretical predictions: ZnllZn symmetric cells with
TGS-modified electrolytes achieved ultralong cycling sta-
bility (>4700 h at 1 mA cm™%/1 mAh cm™?), while ZnlICu
asymmetric cells exhibited a superior CE (99.49% over 1100
cycles at 1 mA cm™%/0.5 mAh cm™>). Full cells paired with
NVO cathodes retained 90.4% capacity retention after 800
cycles at 5 A g~!, underscoring the practical viability of the
TGS additive. These results not only validate the predictive
power of the multiscale framework, but also highlight its
utility in guiding the rational design of electrolyte additives
for next-generation ARZBs.
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