
Vol.:(0123456789)

  e-ISSN 2150-5551
      CN 31-2103/TB

ARTICLE

Cite as
Nano-Micro Lett. 
          (2026) 18:57 

Received: 1 April 2025 
Accepted: 15 July 2025 
© The Author(s) 2025

https://doi.org/10.1007/s40820-025-01876-0

System with Thermal Management for Synergistic 
Water Production, Electricity Generation and Crop 
Irrigation

Meng Wang1, Zixiang He1, Haixing Chang2, Yen Wei3, Shiyu Zhang1, Ke Wang1, 
Peng Xie1, Rupeng Wang1, Nanqi Ren1, Shih‑Hsin Ho1 *

HIGHLIGHTS

•	 Dynamic thermal management: the system achieves evaporation rates of 1.91 kg m−2 h−1 (1 sun) and 0.54 kg m−2 h−1 (darkness) 
through energy storage hydrogel-based energy storage evaporator, effectively mitigating intermittent solar availability.

•	 Enhanced salinity gradient utilization: integrated reverse electrodialysis (RED) system harvests ~0.30 W m−2 from desalination-
concentrated brine, tripling the output of conventional seawater/surface water RED system.

•	 Sustainable resource integration: drainage water enables zero-pollution crop irrigation (shoot length ~87 mm, 7 d), completing the 
seamless integration of water-energy-food nexus. 

ABSTRACT  Sustainable water, energy and food (WEF) supplies are 
the bedrock upon which human society depends. Solar-driven interfa-
cial evaporation, combined with electricity generation and cultivation, 
is a promising approach to mitigate the freshwater, energy and food 
crises. However, the performance of solar-driven systems decreases 
significantly during operation due to uncontrollable weather. This study 
proposes an integrated water/electricity cogeneration–cultivation sys-
tem with superior thermal management. The energy storage evaporator, 
consisting of energy storage microcapsules/hydrogel composites, is 
optimally designed for sustainable desalination, achieving an evapora-
tion rate of around 1.91 kg m−2 h−1. In the dark, heat released from the phase-change layer supported an evaporation rate of around 0.54 
kg m−2 h−1. Reverse electrodialysis harnessed the salinity-gradient energy enhanced during desalination, enabling the long-running WEC 
system to achieve a power output of ~0.3 W m−2, which was almost three times higher than that of conventional seawater/surface water 
mixing. Additionally, an integrated crop irrigation platform utilized system drainage for real-time, on-demand wheat cultivation without 
secondary contaminants, facilitating seamless WEF integration. This work presents a novel approach to all-day solar water production, 
electricity generation and crop irrigation, offering a solution and blueprint for the sustainable development of WEF.
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1  Introduction

Water, energy and food (WEF) are intertwined and essen-
tial elements for sustainable development of human socie-
ties, encapsulating three (Goals 2, 6 and 7) of the 17 United 
Nations Sustainable Development Goals (SDGs) [1, 2]. 
However, current climate change is exacerbating global 
water and electricity shortages while also posing challenges 
to the sustainability of food systems [3, 4]. It is estimated 
that 6 billion people could be affected by clean water and 
energy shortages by 2050, with a 70% increase in food pro-
duction required to feed the world’s population [5–7]. There-
fore, we should prioritize the development of sustainable and 
clean energy to meet global demands, which is essential for 
addressing the multifaceted issues associated with climate 
change and ensuring a sustainable future [8].

Solar energy as a green source has received tremendous 
attention for its ability to generate both fresh water and energy 
[9–12]. Solar-driven interfacial evaporation is an emerging 
desalination technology that holds promise for solving water 
shortage [13–17]. Significant advances have been made in the 
development of solar evaporators through bionics [18, 19], 3D 
printing [20, 21], microfluidics [22, 23] and physical/chemi-
cal cross-linking gel technologies [24–26]. However, solar 
intensity-dependent evaporators typically operate intermit-
tently due to the day-night cycle [27]. As a result, evaporator 
performance would drop sharply by up to 60% under lower 
light intensity [28, 29]. Furthermore, under normal light 
condition, the heat generated by the evaporator is inevitably 
dissipated into the surroundings at lower temperature, thus 
resulting in low thermal energy utilization [30]. Consequently, 
there is an urgent need to develop evaporators with advanced 
thermal management capabilities to address practical chal-
lenges caused by variations in solar intensity [31–33].

In addition, the process of solar desalination extracts not 
only clean water but also salinity-gradient energy from the 
ocean [34, 35]. In this regard, reverse electrodialysis (RED) 
technology enables the efficient conversion of the Gibbs free 
energy (ΔG) from this process into electrical energy [36, 
37]. Therefore, effective thermal management during opera-
tion is necessary to maintain the durability of desalination 
and optimize output [38, 39]. At the same time, based on 
the WEF nexus [40, 41], various components of the water 
cycle network need to be regulated to achieve efficient 

outputs (clean water and electricity), while system drainage 
is optimized for crop irrigation to establish a sustainable 
agricultural food system. This strategy, which integrates 
solar, ocean and terrestrial energy, addresses the trade-offs 
between water, energy, agriculture and climate change. It 
provides a sustainable supply of materials and energy to 
regions facing clean water, energy shortages and irrigation 
water scarcity, significantly enhancing the linkages and 
interactions between energy security and human well-being.

Here, a scalable and efficient all-day integrated system for 
synergistic water production, electricity generation and crop 
irrigation (WEC) was developed using a thermal manage-
ment solar evaporator (Fig. 1). Specifically, polyvinyl alcohol 
(PVA) hydrogels incorporating energy storage microcapsules 
(ESMs) were integrated into the evaporator as heat storage 
modules. This enhances seawater salinity, and RED was 
employed to efficiently extract salinity-gradient energy in the 
form of electricity. As a result, WEC system delivers high 
energy output during continuous operation. Additionally, the 
system achieves a favorable dark evaporation rate, extending 
the efficient power generation of RED. The system’s drainage 
can be used for agricultural irrigation, enabling seamless inte-
gration of the WEF nexus without secondary pollution. This 
technology offers a practical solution to address the global 
scarcity of water, energy and food, providing a pathway for 
achieving green and sustainable development.

2 � Experimental Section

2.1 � Materials

Ethanol (AR, 95%), polyvinyl alcohol (PVA, Mw 89,000-
98,000) and glutaraldehyde (50%, AR in H2O) were pur-
chased from Shanghai Aladdin Biochemical Co., Ltd. 
(China). HDTMS (hexadecyltrimethoxysilane) was supplied 
by NanJing ChenGong Organic Silicone Material Co., Ltd. 
(China). Acetic acid (AR, 99.5%) was purchased from Tian 
in Fuyu Fine Chemical Co., Ltd. (China). PDMS (Sylgard 
184) and the corresponding curing agent were obtained 
from Dow Corning Co., Ltd. (USA). The cation exchange 
membrane (CEM) Nafion 117 was purchased from Dupont 
(USA). The melamine sponge (MS) was purchased from 
Shanghai Junhua Co., Ltd. (China). All chemicals were used 
as received without further purification.
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2.2 � Preparation of ESH, ESE and WEC System

2.2.1 � Preparation of ESH

For the preparation of ESH, 5 g of PVA (polyvinyl alcohol) 
is added to 50 mL of deionized water and heated at 90 °C for 
1.5 h. Then, 5 g of energy storage microcapsules (ESMs) is 
added to the solution and stirred thoroughly. Next, 2 mL of 5% 
glutaraldehyde solution and 5 mL of HCl solution (1 M) are 
added separately. Finally, the mixture is mixed homogeneously 
and poured into a mold with dimensions of 3 cm × 3 cm × 1 
cm. The mixture is ultrasonicated for 10 min, and the energy 
storage hydrogel (ESH) is obtained after cooling and curing.

2.2.2 � Preparation of ESE

Bio-graphene (BG) is prepared based on the previous litera-
ture [42]. First, 2 g of bio-graphene (BG) is added to 50 mL 
of hexane, stirred, and ultrasonically dispersed for 20 min 
to form a homogeneous suspension. Next, 2 g of HDTMS 
(Hexadecyltrimethoxysilane) and acetic acid (0.34 g) are 
added to the BG suspension and stirred for 3 h. PDMS (3.2 
g) and curing agent (0.32 g) are then added to the solution 
and dispersed by ultrasonication for 20 min. The melamine 
sponge (MS) with original dimensions of 11 cm × 7 cm × 4 
cm is cut into blocks of 12, 14, 16 and 18 mm thickness and 

sonicated in ethanol for 10 min to remove impurities. Using 
an airbrush (0.3 mm nozzle, 0.2 MPa pressure), 10 mL of the 
aforementioned suspension was precisely sprayed onto the 
MS surface from a distance of 10 cm, applying three layers 
with 30 min drying intervals between layers, followed by 
thermal curing at 60 °C for 3 h to establish interfacial bond-
ing, resulting in the photothermal layer. Finally, the photo-
thermal layer was cut to the size that could be embedded into 
the ESH, and the ESH was embedded into the photothermal 
layer to obtain the energy storage evaporator (ESE).

2.2.3 � Crop Cultivation Process

For the crop cultivation process, 50 g of wheat seeds is 
soaked in 200 mL of the corresponding liquid (seawater, 
surface water, and drainage) for 12 h. The seeds, which had 
absorbed the liquid sufficiently, are then evenly distributed 
on the well plates of the planting platform without overlap-
ping to ensure enough space for growth. The surface of the 
seeds is covered with paper moistened with the correspond-
ing liquid to maintain a moist environment until the aver-
age shoot length reaches 10 mm. Irrigation of the wheat 
is then continued with drainage, seawater and river water, 
respectively. Throughout the cultivation period, the condi-
tions remained consistent, with room temperature at approxi-
mately 22 °C and humidity around 45%. The shoot and root 

Fig. 1   Schematic diagram of the integrated WEC system with energy management based on the WEF nexus. By incorporating an energy stor-
age module inside the evaporator, a high-efficiency evaporator with a thermal management function was created to enable energy storage and 
latent heat release. During desalination, the increased salt differential energy (ΔGmix) was harvested using RED. Through an integrated crop cul-
tivation platform, drainage from WEC system was utilized for crop irrigation without secondary pollutants
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lengths of the wheat are measured daily to accurately track 
the growth performance.

2.2.4 � Components of the System

WEC system operates with solar energy input, collects clean 
water by ESE, extracts energy from the desalination through 
RED and incorporates a cultivation platform. The system 
investigated in this study consists of three components: an 
ESE-based evaporation unit, a RED-based electricity genera-
tion unit and a crop cultivation platform utilizing system drain-
age. The RED component comprises two rectangular half-cells 
and an ion-selective membrane, with the Nafion membrane 
(N117) fastened at the junction of the two half-cells. The ESE 
is positioned within the seawater half-cell, where solar irradia-
tion is applied. Both half-cells are connected to conduits for the 
respective water supply. The drainage water from the system 
is collected into the cultivation unit to enable the utilization of 
drainage water for wheat seed growth.

3 � Results and Discussion

3.1 � Desalination and Thermal Management 
of the Energy Storage Evaporator (ESE)

The energy storage microcapsules (ESMs, n-octadecane) 
were added to the PVA ([-CH2-CHOH-]n-) precursor solu-
tion and gelatinized to form an energy storage hydrogel 
(ESH, Fig. 2a). The energy storage evaporator (ESE) was 
fabricated by embedding the ESH into a photothermal layer 
made from melamine sponge (MS) and bio-graphene (BG). 
Industrially produced MS (Fig. S1) is a cost-effective and 
readily available porous material, and its highly ideal non-
aggregate skeletal structure provides excellent access for 
unrestricted mass transfer [43, 44]. The superhydrophi-
licity of MS enables rapid water absorption and wetting 
(Fig. S2), making it an ideal substrate for the evaporator. 
The cross-sectional structure of the ESE is shown in Fig. 2b-
i. Fig. 2b-ii shows the lattice structure of BG, and the sur-
face of BG exhibited superhydrophobicity (WCA=153.2°, 
Fig. S3). Additionally, the surface of ESE skeleton (Fig. 2b-
iii) was encapsulated by BG, exhibiting favorable bonding 
(Fig. 2b-iv). The chemically cross-linked PVA network 
forms a hydrophilic polymeric matrix that facilitates rapid 
water transport and efficient vapor diffusion. The composite 

structure incorporates ESMs uniformly dispersed within the 
cross-linked PVA matrix (Fig. 2c-i). The PVA framework 
physically encapsulates individual ESMs, with surface 
hydroxyl groups establishing hydrogen-bonding interac-
tions with adjacent water molecules (Fig. 2c-ii). The embed-
ded ESMs provide controlled thermal energy management, 
exhibiting spherical morphology (average diameter~6 μm) 
at ambient conditions. Within this hydrogel composite, the 
porous architecture features interconnected channels (diam-
eter~60–100 μm, Fig. 2c-iv) that enable unimpeded vapor 
transport during evaporation while simultaneously function-
ing as a thermal energy reservoir through reversible phase 
transitions. The phase-change properties of the hydrogel 
originate from the embedded energy storage microcapsules 
(ESMs), as evidenced by differential scanning calorimetry 
(DSC) measurements showing that melting enthalpy (ΔH) 
= 189.7 J g−1, crystallization enthalpy (ΔH) = 198.1 J g−1, 
the phase transition temperature (Tmelt) = 21.9 °C, crystal-
lization temperature (Tfreeze) = 28.5 °C, which demonstrates 
an optimal match with seawater temperature fluctuations, 
enabling energy storage and release during operation. Also, 
the ESE can remain suspended in seawater due to its super-
hydrophobic surface and hydrophilic interior (Fig. 2e).

The evaporation performance of ESE was evaluated under 
1 sun irradiation (AM 1.5G) and dark conditions. The mass 
changes of bulk seawater, pure MS, ESE 2, ESE 4, ESE 
6 and ESE 8 (where 2, 4, 6 and 8 represent the thickness 
of MS between the surface of ESH and ESE in mm) were 
compared. As shown in Fig. 2f, the mass change was linear 
over time, decreasing when under dark conditions. Infrared 
images (Fig. 2g) show that the surface temperature of ESE 4 
rapidly increased to a steady state of 49.6 °C within 60 min, 
which was significantly higher than the temperature of bulk 
seawater (22.7 °C). The surface temperatures of ESE 4 and 
the evaporator without ESH were 49.6 and 49.8 °C, respec-
tively (Fig. S4), indicating that ESH had no effect on the 
surface temperature of ESE and that thermal energy could 
be successfully stored in ESMs (Tmelt=21.9 °C).

3.2 � Sustainable Water and Electricity Generation 
Based on Desalination

ESE 4 exhibited the optimum evaporation rate (~1.91 kg m−2 
h−1), whereas ESE 2, 6 and 8 had evaporation rates of ~1.78, 
~1.83 and ~1.62 kg m−2 h−1, respectively (Fig. 3a, Note S1). 
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This difference was attributed to the varying absorption of 
surface thermal energy by the seawater contained in the 
MS layer with different thicknesses. In contrast, the lower 
evaporation rates of bulk seawater and pure MS were due 
to the lack of integration with photothermal conversion in 
their desalination processes. The evaporation rates at dif-
ferent solar intensities are shown in Fig. S5. Additionally, 
ESE 4 maintained a dark evaporation rate of ~0.53 kg m−2 
h−1, attributed to the heat released by ESH under dark con-
ditions (Note S2). The ESE demonstrated exceptional ther-
mal cycling stability over 30 cycles, with peak surface tem-
perature maintained at ~49.7 °C and sustained temperature 
at ~27.6 °C, without observable performance degradation 
(Fig. S6a). The mass of the ESE remained unchanged during 
the thermal cycling process (~15.28 g, Fig. S6b), confirming 
the excellent thermal cyclic performance of ESE. Moreo-
ver, the ESE was tested for 21 d in a continuous long-term 

cycling (Fig. S7) and the evaporation rate was maintained 
at ~1.90 kg m−2 h−1; the SEM (inset) showed undamaged 
internal structure after 21 d of cycling, demonstrating that 
the ESE has the potential for long-term operation. After com-
pression–recovery cycles (Fig. S8), the stress–strain curve 
of the ESE maintained exceptional consistency with the ini-
tial cycle, with measured compressive strength (Rmc) and 
compressive elastic modulus (Ec) reaching ~0.19 and ~1.10 
MPa, respectively. These results confirm the excellent elas-
tic recovery capability and robust mechanical properties of 
ESE. Due to the excellent evaporation performance of ESE 
(Table S1), the salt concentration of the condensed water 
collected during desalination at various salt concentrations 
(ocean (3.5 wt%), Red Sea (4.0 wt%) and near-saturated solu-
tion (20 wt%)) remained well below the salinity levels (four 
orders of magnitude) set by the World Health Organization 
(WHO) and the US Environmental Protection Agency (EPA) 

Fig. 2   Desalination performance of energy storage evaporator (ESE). a Schematic diagram of the preparation process of ESE. b Schematic 
cross section of ESE (i), TEM image of bio-graphene (BG) (ii), SEM images of melamine sponge (MS, iii), and the surface of ESE (iv). c Sche-
matic diagram and internal chemical composition of energy storage hydrogel (ESH, i–ii), SEM images of energy storage microcapsules (ESMs, 
iii), and the internal structure of ESH (iv). d DSC curves of ESMs. e Optical images of ESE and its state in water. f Comparison of mass change 
in different evaporators (pure MS and ESE 2, 4, 6 and 8) and bulk seawater in sunlight on/off mode. g Temperature distribution of ESE 4 and 
bulk seawater during desalination (60 min, 1 sun)
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(Fig. 3b). The high evaporation rate of ESE 4 was attributed 
to the specially constructed evaporator structure (Fig. 3c), 
showing a photothermal layer can couple photothermal con-
version with steam production, and a bottom ESH can store 
waste heat from the desalination process. The hydrophilic 
structure of ESE ensures unobstructed channels to achieve 
continuous water pumping and salt transportation. Finite ele-
ment simulations further confirm the enhanced salt transport 
process based on surface thermal localization and salinity 
gradients, ensuring the continuous desalination capability of 
the ESE (Note S3, Fig. S9).

For electricity generation, a desalination-based RED sys-
tem was utilized to evaluate the impact of the desalination 
process on electricity generation from salt differential energy 
(Note S4, Fig. S10). Figure 3d presents a typical schematic 

where a cation exchange membrane (CEM, Nafion 117) was 
assembled between seawater and surface water. Cations pen-
etrated through CEM and were transported toward the sur-
face water side, driven by the salinity gradient. The desalina-
tion process affected the salinity, as shown in Fig. 3e, where 
the salt concentrations rose from 3.50 wt% (0 s) to ~5.45 and 
~8.21 wt% (10,800 s) under conditions with and without sea-
water supply, respectively. However, in the absence of sea-
water supply, continuous evaporation ultimately resulted in 
the saturation and precipitation of seawater salts (Fig. S11), 
disrupting the system’s functionality. Therefore, maintaining 
a steady supply of seawater to RED is crucial for preventing 
declines in seawater levels and salinity saturation, thereby 
enabling sustainable enhancement of seawater salinity and 
stabilizing electricity generation efficiency.

Fig. 3   Evaluation of the sustainable electricity generation process based on desalination. a Light/dark evaporation rates for different evapora-
tors. b Measured salinities of the three samples before and after desalination (14 d). c Schematic diagram of evaporation, energy storage pro-
cesses and salt transport during operation. d RED and the mechanism of salt differential energy extraction. e Variations in seawater concentra-
tions with and without seawater supply. f Variations in open-circuit voltage (Eoc) and concentration after RED reached steady state (within 4 h). 
g I–V curve of RED under seawater desalination. h Pmax of RED from operation to steady state
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As shown in Fig. 3f, the salinity of seawater increased 
linearly from the initial 3.5 wt% to ~5.78 wt% (4 h). This 
is accompanied by an increase in the system’s open-circuit 
voltage (Eoc) from an initial value of ~175 mV to a satura-
tion value of ~221 mV. Conversely, the Eoc of RED without 
the solar desalination process decreased to ~85 mV after 4 
h of continuous operation (Fig. S12). These results indicate 
that the desalination process can increase the Eoc of RED 
system, and the continuous increase in salinity effectively 
replenishes the reactive species near the Ag/AgCl elec-
trodes. This prevents the efficiency degradation that occurs 
during RED operation in the absence of solar desalination. 
Consequently, the integrated desalination-RED system can 
be synergized for sustainable water production and electric-
ity generation.

In addition, typical current–voltage (I–V) curves and 
output power density were measured in this investigation 
(Note S5). The short-circuit current (Isc) of RED was only 
~249 μA (Eoc ~175 mV) in the initial condition. As the sys-
tem continued to operate, the Eoc reached a steady value 
of ~222 mV, and the corresponding Isc reached ~543 μA 
(Fig. 3g). Meanwhile, the power density (Pmax) in the initial 
state was ~0.11 W m−2. As the operation time increased (4 
h, ~222 mV), the Pmax stabilized at ~0.3 W m−2, nearly three 
times higher than the initial state (Fig. 3h). In contrast, in the 
absence of solar desalination process, the Pmax continuously 
declined during operation, reaching a value of ~0.02 W m−2 
(Fig. S13). These results indicate that the heightened salin-
ity gradient during seawater desalination provides a strong 
intrinsic driving force for increasing the power density of 
RED, offering new insights into the sustainable delivery of 
clean water and electricity.

3.3 � All‑Day Performance Testing of Water/Electricity 
Cogeneration

To assess the sustainability of clean water/electricity 
cogeneration, the system (Fig. 4a) integrating ESE and 
RED was evaluated for all-day operational effectiveness. 
The surface temperatures during desalination for four light 
on/off cycles are shown in Fig. 4b, with the evaporator 
without ESH serving as a control. As expected, the sur-
face temperature distributions of ESE and the evaporator 
without ESH exhibited no discernible difference under AM 
1.5G, with both reaching a maximum temperature of ~49.6 

°C. After the light was turned off, the cooling rates of the 
ESE and the evaporator without ESH were measured at 
~0.72 and ~0.91 °C min−1, respectively, demonstrating a 
27% slower cooling rate for the ESE. Furthermore, upon 
completion of a single cycle, the ESE surface temperature 
(~27.9 °C) remained 23% higher than that of the evapo-
rator without ESH (~22.7 °C), which is attributed to the 
effective release of stored thermal energy from the ESH 
(Figs. S14 and S15). Furthermore, the linear fit of the mass 
change curves concerning light duration was well matched. 
In this case, the water production of ESE (~9.37 kg m−2) 
exceeded that of the evaporator without ESH (~7.24 kg 
m−2) in all four cycles, showing a ~30% increase in total 
water yield (Fig. 4c). It is noted that the desalination per-
formance of ESE was more efficient in successive light-
dark cycles due to continuous evaporation (Fig. S16).

Furthermore, intermittent sunlight irradiation (day and 
night, Fig. 4d) can affect the desalination process and 
indirectly influence power generation efficiency, making 
it necessary to assess desalination and output performance 
during actual operation. As shown in Fig. 4e, the initial 
surface temperature of ESE was ~22 °C, which increased 
to ~49.6 °C (12:00, 1 sun) as the light intensity rose. The 
evaporation rate was positively correlated with light inten-
sity, peaking at ~1.91 kg m−2 h−1 (1 sun, 12:00). After, as 
the light angle gradually increased from 90° to 180°, the 
surface temperature decreased to ~22.1 °C, and the evapo-
ration rate dropped to ~0.23–0.25 kg m⁻2 h⁻1. Additionally, 
the seawater temperature remained relatively stable (22-
24.1 °C), demonstrating that the excellent photothermal 
conversion of ESE.

As shown in Fig. 4f, the salinity of the system increased 
continuously from ~3.5 wt% to ~5.63 wt% during the period 
between 6:00 and 14:00 due to varying light intensity. This 
was resulted in the continuous increase of Eoc and Pmax 
from the initial ~173 mV and ~0.11 W m−2 to ~220 mV 
and ~0.29 W m−2, respectively. This increase was attrib-
uted to the rise in seawater salinity, leading to a gradual 
increase in electricity generation. Notably, the peak power 
of the system (14:00) occurred after the peak desalination 
rate (12:00), as the reduction in evaporation rate between 
12:00 and 14:00 slowed the increase in salinity, which had 
not yet reached its peak (salinity peaked at 14:00, ~5.63 
wt%). Moreover, as the light angle increased, system per-
formance from 14:00 to 22:00 exhibited a declining trend, 
with Eoc and Pmax decreasing from ~220 to ~172 mV and 
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~0.29 to ~0.109 W m−2, respectively. Although the system 
switched to night mode after 18:00, the electrodes continued 
to consume the increased salinity from daytime, delaying the 
minimum values of Eoc and Pmax until 21:00. During night-
time, Pmax remained at ~0.11 W m−2 (21:00-6:00). Given the 
inherent concentration difference between seawater and sur-
face water, WEC system could operate continuously in dark-
ness [45, 46]. In summary, the system was able to extract 
high differential salt energy from the desalination process 
during daytime and natural differential salt energy between 
seawater and surface water during nighttime. Meanwhile, 
the power output of the system remained stable during a 
30-day cyclic operation, with Pmax remaining at ~0.29 W 
m−2 (Fig. S17), indicating favorable stability and long-term 
operational potential.

3.4 � Feasibility of WEC System Drainage for Wheat 
Cultivation

Based on a sustainable WEF nexus, a comprehensive water 
cycle should include clean water, electricity production and 
crop irrigation to maximize the use of water resources [47]. 
As evidenced by the preceding analysis, the ESE-based RED 
system demonstrates optimal performance under all weather 
conditions. Therefore, a rational water recycling network 
should be constructed based on the WEF nexus, utilizing 
system drainage for crop irrigation (Fig. 5a). Detailed in 
Fig. 5b, a rational water circulation pathway connects the 
water/electricity cogeneration module to the agricultural 
cultivation platform, with drainage being gathered and 
directed to the platform as needed (Fig. S18). As shown 

Fig. 4   Performance testing of WEC system for all-day water/electricity cogeneration. a Schematic of the all-day water/electricity cogeneration 
system. b Variation in the surface temperature of ESE and the evaporator without ESH during four sunlight on/off cycles (AM 1.5G). c Mass 
change of the distilled water in ESE and the evaporator without ESH during four sunlight on/off cycles. d Changes in light angle throughout the 
day. e Dynamic variations in light intensity, surface and seawater temperature, as well as the evaporation rate in WEC system under simulated 
all-day conditions. f Dynamic variations in the concentration, voltage (Eoc) and power (Pmax) of WEC system under simulated all-day conditions
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in Fig. 5c, the initial concentrations of Na+, K+, Mg2+ and 
Ca2+ in surface water were 183.7, 7.8, 22.4 and 49.8 mg 
L−1, respectively. After the system stabilized, the evapora-
tion rate reached ~1.91 kg m−2 h−1, and the power output 
achieved ~0.29 W m−2 (Fig. S19). The ionic concentrations 
of the drainage were Na+~552.8 mg L−1, K+~13.5 mg L−1, 
Mg2+~33.7 mg L−1 and Ca2+~78.8 mg L−1, which were sig-
nificantly lower than those found in Chinese offshore sea-
water (Fig. S20).

In this work, the crop irrigation capacity of the drain-
age was investigated using surface water and seawater as 
controls. Figure 5d depicts the evolution of root length in 
seeds irrigated with surface water, drainage and seawater 
over periods of 3, 5 and 7 d, respectively. It is noted here 
that seawater-irrigated wheat seeds did not root throughout 
the growth cycle, as the salt concentration exceeded the ger-
mination tolerance threshold for wheat (Fig. S21) [48, 49]. 
The root system of wheat was irrigated with surface water 
and drainage water. As the incubation process proceeded, 
the white roots transitioned from a sparse state at 3 d to 
tightly intertwined at 7 d, with the robust and well-developed 
root system promoting the full absorption of nutrients by the 
wheat seedlings [50].

Similar to root growth, wheat seeds irrigated with seawa-
ter did not germinate (Fig. S22). On the other hand, wheat 
irrigated with drainage exhibited a similar trend in shoot 
length over time to that of wheat irrigated with surface 
water (Fig. 5d). This demonstrates the excellent compat-
ibility between the system drainage and crop irrigation, 
meeting the actual needs of wheat throughout the cultiva-
tion cycle. In this investigation, shoot and root lengths of 
wheat cultivation were recorded separately (Fig. 5e). Dur-
ing the cultivation cycle, it is noted that the shoot and root 
lengths of wheat irrigated with drainage and surface water 
had comparable growth trends, reaching ~87 and ~89 mm 
(shoot length), as well as ~80 and ~83 mm (root length) 
within 7 d, respectively. Meanwhile, the steady-state 
WEC system had a drainage collection rate of 12 L m−2 
h−1 (Fig. S23), which satisfied the water demand for crop 
cultivation. Additionally, throughout the entire cultivation 
period, the evaporation rate and Pmax of WEC system were 
maintained at ~1.89 kg m−2 h−1 and ~0.29 W m−2, respec-
tively (Fig. 5f). This demonstrates that the system is both 
feasible and self-sustaining.

3.5 � Carbon Offsets Provided by the Operation of WEC 
System

To provide a pathway for achieving carbon neutrality, a pre-
liminary assessment of the carbon offsets provided during 
the operational cycle of WEC system has been conducted 
(Note S6, Figs. S24–S29). As illustrated in Fig. 6a, the 
assessment specifically evaluated the greenhouse gas (GHG) 
offsets generated by the system’s integrated processes of 
electricity generation, clean water production and irrigation 
water supply. Over a one-year operational period, the system 
has demonstrated the capability to offset a total of 1,362.52 
kgCO2e (kilograms of CO2 equivalent) in GHG emissions, 
which is approximately equivalent to offsetting the GHG 
emissions produced by combustion of 1,172 m3 of natural 
gas. Additionally, it is noteworthy that the process of supply-
ing irrigation water does not contribute to additional carbon 
emissions in agricultural production.

As depicted in Fig. 6b, throughout the operational cycle of 
WEC system, the carbon offsets associated with electricity 
generation are notably higher during daytime compared to 
nighttime. The period from May to August exhibits the pinna-
cle of these carbon offsets. Nighttime carbon offsets primarily 
stem from RED power generation facilitated by thermal man-
agement. Specifically, the integration of thermal management 
in the evaporator enhances carbon offsets by an additional 
26%, accumulating to a total of 349.41 kgCO2e. The monthly 
trends in carbon offsets from clean water production gener-
ally align with those of electricity generation, as illustrated 
in Fig. 6c, with May through August marking the peak offset 
months within the operational cycle. This alignment is attrib-
utable to the heightened solar intensity and extended daylight 
hours during summer, which bolster the system’s capacity 
to generate electricity, clean water and irrigation water more 
efficiently than during winter, consequently leading to the 
augmented carbon offsets (Fig. 6d). In terms of proportion 
(Fig. 6e), electricity generation accounts for 54% of the carbon 
offsets, whereas clean water production constitutes 46%. Due 
to the distinct attributes of these products, the carbon offsets 
derived from electricity generation marginally surpass those 
from clean water production by approximately 8%, equating 
to 740.51 and 622.0 kgCO2e, respectively. Upon preliminary 
assessment, it is evident that WEC system exhibits sustained 
carbon offsetting capabilities throughout the entire day, thus 
holding substantial promise for attaining carbon neutrality.
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Fig. 5   Growth assessment of wheat cultivation using WEC drainage. a Schematic illustration of WEC system. b Optical image of WEC system; 
c) Drainage ion concentrations (Na+, K+, Mg2+ and Ca2+) for the initial and stabilized operation of WEC system. d Optical images of wheat root 
growth (3, 5 and 7 d) irrigated with surface water, WEC drainage and seawater, respectively. e Optical images of the growth of wheat seedlings 
after 3, 5 and 7 d of irrigation with surface water, WEC drainage and seawater, respectively. f Shoot and root lengths of wheat seedlings irrigated 
with surface water, WEC drainage and seawater, related to the cultivation period. g Evaporation rate and power output of WEC system over the 
wheat cultivation period

Fig. 6   Carbon offsets generated by the operation of WEC system. a Carbon offsets achieved through the generation of electricity, clean water 
and irrigation water by WEC system over the entire assessment period. b Monthly carbon offsets resulting from electricity production by WEC 
system, covering both daytime and nighttime operations. c Monthly carbon offsets achieved through clean water production by WEC system, 
covering both daytime and nighttime operations. d Carbon offset ratio derived from electricity and clean water production by WEC system over 
the entire assessment period



Nano-Micro Lett.           (2026) 18:57 	 Page 11 of 14     57 

The operation mode of water production, electricity gen-
eration and crop irrigation possesses high energy utilization 
efficiency (Note S7, Fig. S30). Through WEC system, sun-
light can be highly converted into thermal energy through 
effective absorption and release of latent heat by ESE with 
thermal management capabilities. This activates water mol-
ecules to produce an efficient interfacial evaporation effect. 
The enhanced water evaporation can increase the salinity 
difference between seawater and surface water, with the 
energy generated from this concentration difference often 
overlooked in previous studies. The advantage of captur-
ing energy through RED system is that the salinity gradient 
can be directly utilized to generate electricity. Moreover, 
WEC drainage can be effectively optimized for agricultural 
applications (Fig. S31). Outdoor experiments demonstrated 
the excellent operational feasibility of the WEC (Note S8, 
Fig. S32), which is exemplifying a sustainable model that 
seamlessly integrates solar desalination, electricity genera-
tion and crop cultivation within the WEF nexus framework. 
Approaches to enhance system efficiency include but are not 
limited to: 1) constructing hybrid photothermal evaporators 
with hierarchical water channels; 2) employing broadband 
metamaterials to increase light absorption beyond 95%; 3) 
integrating aerogel insulation layers at the evaporator base 
to suppress conductive heat loss; 4) utilizing thinner ion-
exchange membranes to reduce membrane resistance. Opti-
mizing key components such as water transport pathways, 
photothermal conversion efficiency, thermal management 
modules and ion-selective membranes holds significant 
potential for substantially improving overall system per-
formance [51–54]. This approach enhances resource effi-
ciency and sustainability, demonstrating a holistic solution 
that addresses critical challenges in water, energy and food 
security.

4 � Conclusions

In this work, a sustainable water–energy–food (WEF) nexus 
is demonstrated through the design of an integrated WEC 
system with advanced energy management capabilities. The 
meticulously designed ESE exhibits high solar absorptivity, 
excellent photothermal conversion and superior heat stor-
age and release properties. The ESE-based WEC system 
effectively extracts clean water and harnesses high differen-
tial salt energy produced during desalination, while system 

drainage is optimized for crop cultivation. By utilizing 
both ESE and RED, the system enables desalination and 
power harvesting, with the evaporation time of ESE system 
extended by ~1 h (~0.54 kg m−2 h−1) in the dark, follow-
ing highly efficient solar desalination (AM 1.5G, ~1.91 kg 
m−2 h−1). In addition, WEC system generates excellent elec-
tricity (~0.3 W m−2) by extracting salt differential energy 
under all weather conditions. Through its crop cultivation 
platform, system drainage supports wheat cultivation, with 
shoot and root lengths reaching ~87 and ~80 mm within 
7 d, respectively. The remarkable all-day output of WEC 
system offers significant potential for low-cost utilization. 
Carbon offset assessment indicates that WEC system has 
the capability to neutralize a total of 1,362.52 kgCO2e of 
GHG emissions during its operational cycle. Additionally, 
WEC system facilitates the integrated use of solar, seawater 
and land-based energy, paving the way for promising pros-
pects in sustainable development within the WEF nexus. 
This innovative system with energy management capabilities 
is expected to have broad applications, including desalina-
tion, wastewater treatment, electricity generation and crop 
cultivation [55, 56], contributing to the realization of global 
carbon neutrality goals.
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