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HIGHLIGHTS

•	 A novel GaN/AlN-based ultrathin quantum-disks-in-nanowires sensor was fabricated, demonstrating voltage bias tunable response 
characteristics to light stimuli.

•	 Image enhancement functionality and a robust reservoir computing system were demonstrated based on the voltage tunable long-term 
and short-term persistent photocurrent respectively.

•	 Furthermore, a high-performance artificial vision system with the two integrated functions was demonstrated, achieving a remarkable 
improvement in human action recognition.

ABSTRACT  Human action recognition (HAR) is crucial for the development 
of efficient computer vision, where bioinspired neuromorphic perception visual 
systems have emerged as a vital solution to address transmission bottlenecks 
across sensor-processor interfaces. However, the absence of interactions among 
versatile biomimicking functionalities within a single device, which was devel-
oped for specific vision tasks, restricts the computational capacity, practicality, 
and scalability of in-sensor vision computing. Here, we propose a bioinspired 
vision sensor composed of a GaN/AlN-based ultrathin quantum-disks-in-nanow-
ires (QD-NWs) array to mimic not only Parvo cells for high-contrast vision and 
Magno cells for dynamic vision in the human retina but also the synergistic 
activity between the two cells for in-sensor vision computing. By simply tuning the applied bias voltage on each QD-NW-array-based pixel, we 
achieve two biosimilar photoresponse characteristics with slow and fast reactions to light stimuli that enhance the in-sensor image quality and 
HAR efficiency, respectively. Strikingly, the interplay and synergistic interaction of the two photoresponse modes within a single device markedly 
increased the HAR recognition accuracy from 51.4% to 81.4% owing to the integrated artificial vision system. The demonstration of an intel-
ligent vision sensor offers a promising device platform for the development of highly efficient HAR systems and future smart optoelectronics.
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1  Introduction

In the era of technological revolution, human action rec-
ognition (HAR) technology, characterized by artificial 
intelligence, has become increasingly important in various 
applications, including security surveillance, video retrieval, 
human–computer interaction, and autonomous navigation 
[1–7]. However, HAR from video sequences still faces 
challenges, such as background clutter, partial occlusion, 
variations in scale or viewpoint, lighting conditions, and 
appearance changes [8–10]. To date, long short-term mem-
ory (LSTM) architectures have been successfully applied 
to analyze temporal complex human activity data because 
of the recurrent connections in their hidden layers [11–13]. 
However, these approaches also have several drawbacks, 
such as the need for large datasets and the time- and energy-
consuming training process [14].

In contrast, biological vision systems can efficiently and 
autonomously perceive motion-related information, per-
forming image enhancement and classification tasks in real 
time through the coordinated operation of various retinal 
cells, including photoreceptors, bipolar cells, and ganglion 
cells [15–18]. Notably, retinal ganglion cells can be catego-
rized into two types: magnocellular (Magno) and parvocel-
lular (Parvo). Magnocellular cells respond rapidly in motion 
detection scenarios, corresponding to “short-term” function-
ality, whereas parvocellular cells exhibit a slower response 
in low-contrast environments, corresponding to “long-term” 
functionality [19–21]. Consequently, the human visual sys-
tem exhibits remarkable adaptability to a wide range of envi-
ronmental conditions—whether static or dynamic, and from 
blurred to well-defined stimuli—enabled by biologically 
inspired long short-term memory (bio-LSTM) architectures. 
This functional differentiation among retinal cells underpins 
the efficiency of natural vision and serves as inspiration for 
the development of dual-functional artificial vision devices.

Herein, we propose a versatile vision sensor composed 
of GaN/AlN-based ultrathin quantum-disks-in-nanowires 
(QD-NWs) with reconfigurable photoelectric properties 
to mimic visual behaviors in biological cells. Notably, the 
well-designed nanowire consists of an n-GaN layer, GaN/
AlN multiple QDs, and an n-GaN cap layer. The n–i–n-type 
band structure minimizes the separation between electrons 
and holes, whereas the high barrier height of the AlN quan-
tum barriers confines carriers in the QD-NWs, enabling a 

dual-modal persistent photocurrent (PPC). Furthermore, 
each quantum disk comprises several layers of GaN, which 
enhances the quantum-confined Stark effect (QCSE) and 
spontaneous polarization. This design allows for modulation 
of the wavefunction overlap, which regulates the recombi-
nation probability of nonequilibrium carriers, enabling the 
PPC behavior to switch between the “long-term mode” and 
“short-term mode”. As a result, the device can carry out 
image sensing and preprocessing tasks very well apart from 
fundamental synaptic plasticity performance under long-
term mode. Additionally, a high-performing and robust 
long short-term reservoir computing (LSTRC) system was 
constructed based on QD-NWs for human action recognition 
in short-term mode. Finally, an integrated artificial vision 
system is constructed with a remarkable improvement in 
recognition accuracy from 51.4% to 81.4%. The advance-
ment of the proposed QD-NW bioinspired vision sensor 
holds significant promise for the development of compact 
and efficient artificial vision systems.

2 � Experimental Section

2.1 � Epitaxy

The nanowires used in this work were grown on planar 
n-type Si substrates via plasma-assisted molecular beam 
epitaxy. Before the Si wafers were loaded into the molecu-
lar beam epitaxy chamber, they were cleaned with acetone, 
methanol, and HF-H2O solution to remove organic contami-
nants and surface oxides. Thereafter, to further remove the 
organic contaminants and water components, the Si wafers 
were outgassed in the buffer chamber at 780 °C before 
growth initiation. Then, during nanowire growth, nitro-
gen radicals were supplied from a radio-frequency plasma 
source. The Al, Ga, Mg, and Si fluxes were controlled by 
the respective thermal effusion cells. The detailed growth 
process followed previous works [22–24].

2.2 � Device Fabrication

The samples were thoroughly cleaned with acetone, iso-
propyl alcohol (IPA), and deionized (DI) water. Subse-
quently, 20% HF was used to remove surface oxidation from 
the NWs. Thin metal stacks of Ti/Au (5/5 nm) were then 
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deposited on the top of the NW array. The thin film showed 
a 33.1% transmittance at the wavelength of 254 nm which 
suggests its semitransparent feature (Fig. S1). During the 
metal evaporation process, the NW wafers were tilted ≈ 40° 
(Fig. S2). Finally, Ti/Au (10/150 nm) stacks were deposited 
on the back side of the samples (Si side) to achieve back 
contacts.

2.3 � Characterizations

The nanowires for STEM characterization were mechani-
cally removed from the epitaxial Si substrates and dispersed 
on a lacy carbon film mesh Cu TEM grid. The STEM meas-
urements were conducted using an FEI Talos F200X instru-
ment operating at 200 kV. The nanowires have an average 
length of ~ 300 nm with μ = 307.5 nm, σ = 11 nm, as charac-
terized by 100 nanowires and the statistical data are shown 
in Fig. S3. The I–V characteristics were measured via an 
Agilent B1500A semiconductor device analyzer.

2.4 � FDTD Simulation

In FDTD modeling for simulating the behavior of light 
within a device, the refractive indices and absorption coef-
ficients for GaN can be obtained from previous works [25, 
26]. The 254 nm plane wave sources are placed at the top 
of the NWs.

2.5 � Human Action Classifications

The Weizmann Human Action Dataset was used for the 
human action classification task, which included 10 human 
actions recorded from the performance of 11 people under 
different lighting conditions; these actions included run-
ning, walking, skipping, jumping jack (jack), jumping 
forward on two legs (jump), jumping in place on two legs 
(pjump), gallop sideways (side), wave two hands (wave2), 
wave one hand (wave1), or bending. We used the fore-
ground-mask videos in the dataset, clipped the videos into 
a four-frame clip by sliding a clipping window of four 
frames through each video, and average-pooled them into 
15 × 12-pixel data for RC input.

3 � Results and Discussion

3.1 � Two Types of Ganglion Cells and Reconfigurable 
Artificial Visual Sensor

The human visual system, characterized by a hierarchical 
biostructure, comprises the retina, optic nerve, and visual 
cortices [27]. The visual information is initially sensed 
by the photoreceptor cells and subsequently processed 
with the assistance of the nerve layer, including bipolar 
cells, horizontal cells, and ganglion cells, facilitating a 
highly efficient vision system, as illustrated in Fig. 1a. 
Notably, ganglion cells can be divided into magnocellular 
and parvocellular cells via cell differentiation and are dis-
tinguishable both anatomically and physiologically [20]. 
The Magno cells are larger and exhibit faster responses, 
indicating their role in motion detection. In contrast, parvo 
cells are smaller and respond more slowly to input signals, 
playing a key role in low-contrast vision [21]. These dis-
tinct visual characteristics enhance image processing and 
motion classification while utilizing limited computational 
resources.

Inspired by the dual-functional nature of ganglion 
cells, we developed a GaN nanowire-based vision sensor. 
Owing to its efficient bias-tunable PPC characteristics, the 
NW sensor exhibits long-term PPC under “Parvo mode” 
for sensing and in-sensor image preprocessing (Fig. 1b; 
details are shown in Sect. 3.3). In addition, a high-per-
forming LSTRC system for human action classification 
based on the NW sensor was also demonstrated under 
“Magno mode”, which revealed short-term PPC behavior 
(Fig. 1c; details are shown in Sect. 3.4). These two adjust-
able response features to light stimuli closely align with 
the characteristics of the biological vision system, and a 
high-performing functional fusion artificial vision system 
was constructed for human action classification.

3.2 � Characterization of the Nanowire Structure 
and Light‑Triggered Photoelectric Performance 
of the Device

The designed nanowire sensor serves as the fundamental 
building block of the bioinspired vision system. There-
fore, detailed characterization of its microstructure is 
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essential for understanding and optimizing device per-
formance. The GaN-based NWs were directly grown 
on the n-Si substrate and feature a multilayer structure, 
including an n-type GaN layer, GaN/AlN MQDs, and an 
n-type GaN cap layer. GaN-based nanowires are selected 
for their exceptional optoelectronic properties, includ-
ing the tunable bandgaps of the GaN material system, as 
well as the advantages provided by their one-dimensional 
(1D) geometry, such as strain relaxation, a large surface-
to-volume ratio, and CMOS compatibility when grown 
on silicon substrates [28–30]. As illustrated in Fig. S4, 
energy-dispersive spectroscopy (EDS) element mapping 
demonstrated the distribution of Ga, Al, and N atoms, 
further revealing that the nanowires were grown under 

precise control. To confirm the successful growth of the 
GaN/AlN heterostructures, high-angle annular dark-field 
scanning transmission electron microscopy (HAADF-
STEM) was performed, as shown in Fig. 2a. The dark-
field image of a single nanowire was divided into three 
parts, reflecting the different contrasts of gallium and alu-
minum atoms. Notably, the MQDs presented slopes close 
to the nanowire sidewalls, corresponding to the diffusion-
controlled growth mechanism of III-nitride nanowires and 
the differences in incorporation efficiency on different 
crystalline planes [31, 32]. In Fig. 2b, the darker contrast 
indicates the AlN barriers, whereas the brighter lattice 
contrast represents the GaN disks, and the statistics of 
the GaN layer thicknesses are in good agreement with 
the designed values. The GaN layers can be recognized in 
the high-magnification atomic-resolution image (Fig. 2c). 
To determine the composition of the GaN layer, the line 
intensity profiles were further revealed, revealing several 
layers of GaN embedded within the AlN. The energy band 
structure was analyzed via Advanced Physical Models of 
Semiconductor Devices (APSYS) provided by Crosslight, 
Inc. Figure 2e shows the simulated band structure of the 
nanowire, clearly delineating its three constituent regions. 
A magnified view of the quantum disk region is provided 
in Fig. 2f. Owing to the differences in spontaneous and 
piezoelectric polarization between GaN and AlN, the 
band structure exhibits a characteristic sawtooth-like 
profile. Notably, obvious piezoelectric and spontaneous 
polarizations in quantum wells under the equilibrium state 
and electron and hole wavefunctions (|ψ|2) are localized in 
the GaN disk region [33, 34]. Polarization-field-induced 
separation of electrons and holes reduces the degree of 
overlap of the wavefunctions, thus reducing the probabil-
ity of electron and hole recombination. The n–i–n struc-
ture, with n-type GaN on both sides of the intrinsic (GaN/
AlN MQD) region, ensures symmetry in carrier injection 
and extraction. Additionally, the GaN/AlN heterostructure 
configuration supports better quantum confinement and 
separation of photogenerated carriers within the quantum 
disks, while maintaining effective confinement within the 
MQDs for PPC generation, which is critical for realizing 
the bias-tunable persistent photocurrent behavior. The 
well-designed architecture thus enables promising appli-
cations in advanced photoelectronic systems.

To investigate the photoelectric performance of the 
nanowire, a vertical structure device was fabricated, with 

Fig. 1   Schematic of the human vision system and nanowire-based 
neuromorphic device with long-term mode for in-sensor image 
enhancement and short-term mode for high-level data classification. 
a In the human visual system, visual information is sensed by photo-
receptors and then preprocessed by ganglion cells, and the processed 
images are transmitted to the visual cortex for high-level processing, 
including recognition and classification. Owing to their ability to 
undergo cell differentiation, ganglion cells present profoundly dif-
ferent response behaviors, including fast response and slow response 
characteristics, to the input signals from photoreceptors. Similarly, 
our proposed intelligent humanoid vision sensor can operate in two 
modes: b Long-term mode under negative bias for image sensing and 
preprocessing and c short-term mode under positive bias for reservoir 
computing
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the fabrication process detailed in the methods section and 
illustrated in Fig. S2. A 5/5 nm Ti/Au layer was deposited 
atop the NW array as the top contact pad. For the back side, 
a 10/150 nm Ti/Au layer served as the back contact pad. A 
schematic of the device is shown in Fig. 2d, and the cur-
rent–voltage sweeping curve under various light intensity 
is shown in Fig. S5, demonstrating the photoresponsivity 

of the QD-NW device. As shown in Fig. 2g, when a posi-
tive bias and 254 nm deep ultraviolet (DUV) illumination 
are applied to the device, a photocurrent is generated and 
gradually increases, corresponding to process (I). Notably, 
upon removal of the light source, the photocurrent does not 
immediately vanish but instead decays slowly over time, 
leading to the emergence of a persistent photocurrent (PPC), 

Fig. 2   Schematic and characterization of the nanowire and device. a HAADF-STEM image of a single NW with an n-type GaN layer, GaN/
AlN MQDs, and an n-type GaN cap layer. b Partial enlargement image of the slope section near the edge of the NW. c Atomic image of the 
GaN quantum disks separated by AlN quantum barriers and an atomic model corresponding to the schematic of the crystal lattice. d Vertically 
structured optoelectronic device schematic based on the designed nanowires. The electrode size was defined as 200 × 200 μm2. e Band structure 
diagram of the nanowire. f Detailed view of the quantum structures in the active region. g Persistent photocurrent observed in the NW sensor 
under 254 nm light illumination. h (I) Structure and band alignment of the nanowire under positive bias and 254 nm illumination, illustrating the 
photocurrent generation mechanism. (II) Carrier transfer mechanism after UV light illumination
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as illustrated in process (II). Figure 2h (I) shows the band 
alignment of the nanowire under positive bias and UV light 
stimuli. According to the results of 3D finite-difference time-
domain (3D-FDTD) calculations (Fig. S6), DUV light at 
254 nm is predominantly absorbed by the MQD region of 
the NWs. Under 254 nm illumination, electrons and holes 
are excited and subsequently separated by the external elec-
tric field, leading to the generation of a DUV light-induced 
photocurrent. After illumination (Fig. 2h(II)), the photoin-
duced electrons and holes become trapped in the GaN disks 
due to the high energy barrier of AlN, causing the slow 
decay of the photocurrent, corresponding to the PPC phe-
nomenon. Moreover, the slow photonic response exhibited 
by the device emulates the biomimetic capture and release of 
neurotransmitters, reflecting the changes in synaptic weight 
observed in bionic synapses. The nanowire device exhibits 
bioinspired functionalities similar to those of biological vis-
ual systems, particularly in terms of differential light adapta-
tion and memory behavior. Accordingly, a mechanistic anal-
ysis of the voltage-modulated photoresponse characteristics 
is provided to elucidate the underlying physical principles.

3.3 � Image Acquisition with Enhanced Performance 
in Long‑Term Mode

When the NW device is negatively biased (Fig. 3a), the 
external electrical field direction is aligned with that of 
the polarization field, and the GaN disk energy band tends 
to be more inclined. Thus, the inclination enhances more 
separation of electrons and holes in the wells, reducing the 
degree of wavefunctions overlap (Fig. 3b). Consequently, 
the probability of recombination for nonequilibrium carriers 
generated by UV light decreases, leading to a relatively long 
PPC (Fig. 3c). The decay process can be well fitted by an 
exponential function with two relaxation times:

where I represents the photocurrent, A1 and A2 are the fitting 
prefactors, and τ1 and τ2 denote the time constants associ-
ated with the rapid and slow relaxation phases, respectively. 
I0 is the steady-state value of the photocurrent. τ1 and τ2 
are extracted from the formula to be 0.85 s and 32.57 s, 
respectively, which demonstrates an initial fast decay fol-
lowed by a slow decay. Notably, the kinetics of current decay 
closely resemble the memory loss behavior observed in 
neuronal systems [35]. Band structures under different bias 
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voltages are simulated, as shown in Fig. S7. When the bias 
is switched from − 3 V to 0 V, the degree of wavefunction 
overlap changes from 69.5% to 76.2%. The experimental 
data in Fig. S8 also corroborate the simulation results. The 
PPC behavior varies as the bias voltage changes from − 2 V 
to − 0.5 V. The PSC decay processes are fitted by formula 
(1), and the fitting parameter τ2, which represents the long-
term decay phase, has relatively long duration characteris-
tics and decreases from 35.94 s to 28.05 s as the degree of 
polarization reduction caused by the external bias voltage. 
Additionally, the repeatability and uniformity of the PPC 
behaviors are essential to high-performance and reliable 
voltage bias-tunable functions. As a result, the repetitive 
experimental data from stochastically selected 20 QD-NW 
devices were characterized, as shown in Fig. S9a, illustrat-
ing the good voltage bias adjustable decay time reproduc-
ibility. Also, we switched on and off the light 20 times under 
the same bias voltage conditions, the representative device 
shown good cycle-to-cycle variation, as shown in Fig. S10 
red point plot.

In this scenario, pulse interval-dependent plastic-
ity was demonstrated by applying two successive light 
pulses with a duration of 1 s and different interval dura-
tions under a negative bias, analogous to the paired-pulse 
facilitation (PPF) observed in biological synapses, as 
shown in Fig. S11a inset. In biological systems, PPF is a 
crucial short-term plasticity enhancement process and is 
essential for the temporal decoding of visual signals. PPF 
can be defined as (A2/A1) × 100%. The PPF index strongly 
depends on the pulse interval (Δt), where the distribution 
of the PPF index can be well fitted by a double-exponen-
tial equation [36, 37]:

The fitting curve indicates the exponential fitting result, 
as shown in Fig. S11a. The PPF index decreases from 184% 
to 125% as Δt increases from 0.5 s to 15 s after applying 
paired-light pulses. This is consistent with more recombina-
tion of the confined carriers in the GaN disks with longer Δt. 
The facilitation process can be categorized into fast and slow 
decay components, depending on the comparison between 
Δt and the PSC decay time. When Δt is much less than the 
decay time, the PPF index decreases rapidly with Δt, cor-
responding to the fast decay process featuring a small τ1. As 
Δt is sufficiently large, the PSC increment evoked by the 
second spike is limited, implying that more carriers relax 
during longer intervals, resulting in the PPF index gradually 
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approaching 100% as Δt increases, which is consistent with 
previously reported neuro-inspired optically stimulated 
devices [38–41]. Furthermore, on the basis of the PPF 
behavior, the synaptic plasticity transition characteristics 

are also achieved in such a long-term mode situation, as 
shown in Fig. S12.

Vision serves as the primary channel through which 
humans acquire external information, making visual 

Fig. 3   Long-term PPC behavior-based image enhancement. a Schematic diagram of the proposed sensor under negative bias and a slow 
response to light illumination, corresponding to the biological behavior of Parvo cells. b Polarization degree enhancement under negative bias, 
reducing the wavefunction overlap. c Biomimetic long-term persistent photocurrent phenomenon observed in the nanowire device under 254 nm 
UV light illumination and negative voltage bias. d Schematic of the main letter and noisy letter stacking and a vague image as the input to the 
NW sensor. e In-sensor preprocessed image with the enhanced main letter “G.” f Current decay characteristics triggered by different light inten-
sities and increasing contrast over time. g Schematic diagram of the constructed artificial neural network for image recognition (FC layer 1: 
ReLU activation; FC layer 2: Softmax activation). h Comparison of images before (SNR = 1/0.3) and after enhancement (SNR = 1/0.15). i Rec-
ognition accuracy over training epochs of the NW sensor array for image preprocessing (shaded area: std. N = 5)
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memory the most efficient mode of memory within the 
human brain [42]. Consequently, artificial visual sensors 
designed for constructing intelligent vision systems should 
demonstrate robust visual memory behaviors akin to those 
observed in the brain. A neural-inspired optical sensor array 
was constructed on the basis of 8 × 8 matrix nanowire pixels 
(Fig. S13). The device-to-device variation was statistically 
evaluated (Fig. S14). The excellent uniformity of perfor-
mance metrics of the device is crucial for the acquisition of 
high-quality images in the sensing system.

The effective modulation of the current relaxation speed 
was also determined in the nanowire sensor by adjusting the 
intensity of light stimulation, thus enabling the experimen-
tal implementation of image preprocessing, particularly in 
enhancing contrast between the target and background let-
ters, a fundamental function in bio-vision compared with a 
digital imaging system. To evaluate the performance of the 
neuro-inspired optical sensor array, a “G”-shaped photomask 
with 17 pixels was placed on top of the array for measure-
ment (measurement setup is shown in Fig. S15). The light 
transmitted through the photomask and then focused by the 
lens. The pattern on the mask was projected onto the device 
and the photocurrent of each pixel was recorded. Initially, we 
projected the target letter onto the sensor array via an optical 
mask at a light intensity of 0.985 mW cm−2 and recorded 
the corresponding current of each pixel. The photocurrent 
of the noisy letter with a light intensity of 0.553 mW cm−2 
was also obtained via the same procedures. Figure 3d shows 
the light intensity map of the input image corresponding to 
the photocurrent after 1 s of illumination, including a tar-
get letter “G” and relatively faint noisy letters “A” and “N.” 
After decay for 200 s, the remaining photocurrents of the 
pixels were extracted and map-plotted (Fig. 3e). Figure 3f 
displays the photocurrent decay characteristics of the device 
triggered by the same light pulses with light intensities of 
0.985 and 0.553 mW cm−2. Since the current triggered by a 
lower light intensity decays faster, the current triggered by a 
higher light intensity decays more slowly. The corresponding 
average values of the pixels in the target letter and noisy let-
ter are normalized as the signal-to-noise ratio (SNR). Com-
pared with the light intensity contrast of the input image, 
the current contrast between pixels with different light illu-
minations is increased from SNR = 1/0.33 to 1/0.15 after 
the decay process without the use of external circuits, just 
like when people focus on a specific object, the remain-
ing surrounding information is mostly filtered. Thus, a 

considerable increase in the ratio of the remaining photocur-
rent contrast is estimated to be 6.6 after decay process. The 
light intensity-dependent current relaxation speed enables 
contrast enhancement of the input image, aligning with the 
transition from STP to LTP corresponding to the light pulse 
intensity, enabling highlighting of the target letter within a 
noisy background. In contrast to traditional image sensors, 
which rely on light signal inputs translated into electrical 
outputs before software postprocessing, our bioinspired 
nanowire devices offer a more integrated approach. They 
can directly generate synaptic outputs upon receiving optical 
signals, thereby executing image enhancement tasks in real 
time without the need for additional filters or postprocessing 
software. Clearly, the enhanced image after repeated training 
demonstrates an enlarged difference between the grayscale 
of the pixels over the input images, thus contributing to an 
output image with enhanced contrast and highlighted fea-
tures. To evaluate the recognition accuracy of the images 
before and after contrast enhancement, we constructed a 
simple artificial neural network with only one hidden layer 
without any preprocessing function, as shown in Fig. 3g, 
benchmarked by a 70,000-sized image dataset (60,000 for 
training and 10,000 for testing), including 10 categories of 
noisy handwritten letter images from the Modified National 
Institute of Standards and Technology (MNIST) dataset. 
Each image with a noise rate = 0.3 was extracted as the raw 
dataset, and images with a noise rate = 0.15 were extracted 
as the enhanced dataset for image recognition. A comparison 
of the raw image dataset and the enhanced dataset indicated 
that preprocessing of the sensor array evidently reduced the 
noise, as depicted in Fig. 3h. The recognition accuracy of 
the images is shown in Fig. 3i. A remarkable improvement in 
the recognition accuracy was achieved from 71.6% to 91.4% 
after enhancement with only 25 training epochs. The results 
of the enhanced output image indicated that the NW sensor 
array could have high competitiveness in intelligent image 
sensing systems under negative bias.

3.4 � Reservoir System based on the QD‑NW Sensor 
for Human Action Classification in Short‑Term 
Mode

With the demonstration of the short-term mode, the QD-NW 
sensor has been able to achieve contrast vision well. More 
interestingly, as mentioned previously, the Magno cells 
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respond quickly to neural signal stimuli, and similarly, 
the QD-NW sensor shows a fast response to light stimuli 
(Fig. 4a). When a positive bias is applied to the device 
(Fig. 4b), the internal polarization direction is opposite to 
the external electric field, resulting in a reduction of the 
overall polarization field. Under these conditions, the over-
lap of electron and hole wavefunctions increases, enhancing 
the recombination rate of nonequilibrium carriers and giving 
rise to a short-term PPC effect. Although the photocurrent 
exhibits a similar response under negative bias, the PPC 
duration in the positively biased case is noticeably shorter. 
The simulation results also show that the degree of wave-
function overlap differs with the applied voltage, ranging 
from 76.2% to 79% as the bias changes from 0 V to 3 V, as 
shown in Fig. S7. The experimental data in Fig. S8 are also 
consistent with the simulation results. The PPC behavior 
varies as the bias voltage changes from 0.5 V to 2 V. The 
fitting parameter τ2 decreases from 4.95 s to 1.46 s with 
decrease in polarization degree caused by the external bias 
voltage and presents short-term behavior overall compared 
with the situation under negative bias. The repeatability and 
uniformity experiments were also constructed (Figs. S9b and 
S10 blue point plot), showing good controllability of our 
QD-NW device. Similarly, the fundamental PPF and STP-to-
LTP transition behaviors are successfully achieved by adjust-
ing the illumination conditions, as shown in Figs. S11b and 
S16.

In short-term mode, a hardware-emulated reservoir com-
puting system based on the QD-NW device is constructed. 
On the basis of the four-bit reservoir capacity of our device, 
it can be modeled on biological systems to implement in-
sensor RC for human motion classification. In the case of 
running motion, for example, four optical frames (15 × 12 
scale) in continuous motion are considered as input data 
and then enter the reservoir array in time series without any 
analog-to-digital conversion. To clearly describe the input 
process, representative pixels of the four frames are high-
lighted with white boxes. The pixels at the same position in 
the four frames are converted into four light pulses according 
to the binary colors and then fed into a reservoir in a time 
sequence (Fig. 4d). To illustrate the feature sampling, the 
I–t curves of four representative inputs of “1100,” “0110,” 
“1110,” and “1111” of the QD-NW reservoir are shown in 
Fig. 4e. Although the valid last pulses are all “1,” their decay 
processes after the input sequences are different. Therefore, 
the final state of the reservoir not only is related to the last 

input but also depends on its real-time state, indicating the 
lateral connections in such a nanowire reservoir. The 10 
human actions from the Weizmann Human Action Data-
set for the spatiotemporal recognition task were applied for 
performance evaluation [43]. Details about the dataset are 
provided in the Methods section. The foregrounded mask 
video set was used in this task. Here, the reservoir arrays 
sense the light sequences and transmit them to the reservoir 
states connected to the input neurons for classification. To 
demonstrate the capability of the feature mapping of the 
reservoir, a four-bit optical stream was measured, which 
can be mimicked by the corresponding four-bit inputs in the 
range “0000” to “1111,” as shown in Fig. 4f. Each periodic 
input waveform (0.5 s pulse width, 0.5 s pulse interval) is 
considered as one bit, in which the “off” and “on” states of 
the light pulse are represented as “0” and “1” in the time 
frames. The configuration of the input/output feature space 
is the basis for readout training. Therefore, all the I–t charac-
teristics of all the four-bit inputs of the pixel sequences have 
been measured and sampled for feature values. In addition, 
similar statistical results (five cycles for each input) further 
validate the reliability and repeatability of the QD-NW res-
ervoir (Fig. S17). The photoresponse characteristics and 
input–output feature extraction of input signals which can 
illustrate device-to-device variation during the encoding 
operation are also characterized. Statistical data for the four 
representative four-bit inputs from stochastically selected 
20 QD-NW devices are shown in Fig. S18, indicating sta-
ble encoding behavior and minimal performance deviation 
across the array. These results support the robustness and 
uniformity of our in-sensor reservoir computing system. On 
the basis of the conspicuous difference, each frame sequence 
can be featured by current sampling to realize feature extrac-
tion, as shown in Fig. 4g. The raw video was preprocessed 
into 15 × 12 pixels per frame, with four frames per clip, 
to adapt the four-bit light pulse input, which reveals that 
the reservoir array successfully retains the characteristics 
of the four-frame action stream. By simulating the readout 
network training shown in Fig. 4h, the recognition accuracy 
of the “run” action successfully achieves 95% accuracy only 
after 20 training epochs. The recognition accuracy of all 10 
human actions increased after training (Fig. 4i). As a result, 
we successfully constructed a physical reservoir computing 
paradigm in which a hardware system with tunable vola-
tile memory and nonlinear readout dynamics serves as the 
reservoir.
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Fig. 4   Short-term PPC behavior-based reservoir computing for human action classification. a Schematic diagram of the proposed sensor under 
positive bias and a fast response to light illumination, corresponding to the biological behavior of Magno cells. b Polarization attenuated under 
positive bias, increasing the wavefunction overlap. c PPC phenomenon under 254 nm UV light illumination and positive bias. d Input temporal 
signals of the video classification task and four frames extracted from the video and coded into four bits of light pulses. e Photoresponse charac-
teristics and input–output feature extraction of four representative inputs: “1100,” “0110,” “1110” and “1111.” f Readout current generated by 16 
series of optical pulse trains ranging from “0000” to “1111.” g Reservoir output for a sample of “wave1” and “run” from the Weizmann dataset. 
The results show that the reservoir array successfully retains four frames of the action stream. h Training and validation recognition accuracy 
of the as-built in-sensor RC system. i Confusion matrix for classifying the 10 human actions. (The number of significant decimal places for the 
accuracy value was set to 1)
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3.5 � Robustness and Increased Recognition Accuracy 
of the QD‑NW Sensor Enabled via Synergistic 
Amalgamation of the Two Photoresponse Modes

To illustrate the potential of our QD-NW sensor for high-
accuracy human action classification, the conceptual config-
uration of the QD-NW vision sensor chip and the processing 
pathway are demonstrated. Figure 5a displays time sequence 
image frames captured by the sensor array, depicting the 
wave-two-hands action. The dynamic image sensor module 
comprises a short-term mode for reservoir computing and 
a long-term mode for image enhancement, which can be 
modulated by voltage bias (Fig. 5b). To explain the opera-
tion process more clearly, we constructed a circuit diagram 
of the QD-NW chip (Fig. 5c). The input data are first pro-
cessed by the short-term mode-based RC system and con-
verted into persistent photocurrent characters. The readout 
photocurrents are then processed and fed into a conceptual 
converter module that transforms the electrical output back 
into controlled optical pulses which serve as inputs for the 
second stage where the long-term PPC effect enables image 
enhancement. The flowcharts of the experimental proce-
dure are shown in Fig. S19, and a detailed discussion is as 
follows.

A scenario with unavoidable input noise often exists 
in real-world video recognition tasks. On the basis of the 
aforementioned in-sensor processing feature and high-per-
formance NW-RC system, the recognition accuracy of the 
human actions before and after contrast enhancement was 
evaluated. Figure 5d, e shows the extracted wave2 action 
under SNRs of 1/0.3 and 1/0.15, corresponding to the unen-
hanced and preprocessed video frames, respectively, indi-
cating that the in-sensor preprocessing character evidently 
reduced the noise rate, improving the contrast between the 
target pixels and backgrounds.

Importantly, the robustness of the RC system plays a key 
role in the performance of the proposed artificial vision 
system. To estimate the robustness of the NW-RC system, 
different levels of device noise, characterized by cov (coef-
ficient of variance) of Gaussian noise, were applied to the 
NW reservoir outputs to mimic the application of nonideal 
factors (e.g., device-to-device and cycle-to-cycle variations, 
operational discretization, etc.) on the hardware. Figure 5f 
depicts the bend action readout current maps from the 
NW-RC at noise rates of 0 (noise-free) and 0.5 (amplifica-
tion level) (a flowchart is shown in Fig. S20). Notably, the 

recognition accuracy remains above 90% even at noise rates 
of up to 50%, as shown in Fig. 5g, and varying degrees of 
noise are introduced into the system to analyze the impact 
on accuracy. A comparison of the validation accuracy versus 
training epoch for noise rates of 0.0–0.5 (cov) is shown in 
Fig. S21. The recognition accuracy after 20 training epochs 
of 10 human actions is very close to the ideal value (Fig. 5h). 
These results suggest that the physical NW-RC system 
successfully extracts motion features from optical frame 
sequences with favorable robustness. In summary, the as-
built in-sensor RC system leveraging our proposed nanowire 
synaptic devices has promising potential to be competent for 
high-precision video classification tasks.

The results of the noisy HAR recognition task are shown 
in Fig. 5i. We achieved a remarkable improvement in accu-
racy from 51.4% to 81.4% after integrating the in-sensor 
image enhancement function. Additionally, the recognition 
accuracy of the hardware-based RC system is higher than 
that of the software-only classification, further demonstrat-
ing the denoising capability of our device. Therefore, the 
integration of GaN nanowire neuro-inspired image enhance-
ment and a robust reservoir computing system enables 
highly efficient and precise human action classification.

4 � Conclusions

In summary, we developed a versatile vision sensor com-
posed of GaN/AlN-based ultrathin QD-NWs with config-
urable photoelectronic properties. The device exhibited 
remarkable voltage bias-assisted modulation capabilities, 
demonstrating two distinct modes of voltage bias-induced 
photoresponse: the “long-term mode” and the “short-term 
mode”. Under long-term mode, the photoresponse under 
negative bias enables effective image sensing and preproc-
essing, achieving high image enhancement corresponding 
to light dosage-dependent plasticity. Moreover, a high-per-
forming and robust reservoir computing system is developed 
on the basis of the QD-NW sensor in short-term mode under 
positive bias, attaining impressive recognition accuracy for 
human actions. Notably, a significant increase in recogni-
tion accuracy is observed, increasing from 51.4% to 81.4% 
after preprocessing in long-term mode, indicating the highly 
synergistic integration of the two modes and the establish-
ment of an efficient artificial vision system. The QD-NW-
based bioinspired sensor enables neuromorphic hardware 
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Fig. 5   The integration of the two modes with great robustness results in higher recognition accuracy after in-sensor denoising. a Illustration of 
the time sequence image frame sensed by the QD-NW sensor array. b Schematic of the QD-NW sensor array, which consists of two modes in 
each pixel. c Circuit diagram of the sensor system. The input data are processed by the short-term mode-based RC system, which outputs the 
current and converts it into the inputs of the long-term mode section for image enhancement. d Extracted wave-two-hands action under input 
video SNR = 1/0.3. e Extracted wave2 action under input video SNR = 1/0.15. f Bend action in the HAR dataset readout current maps from 
NW-RC under Gaussian noise rates of 0.0 and 0.5 for simulating variations in NW reservoir output. g Validation accuracy versus training epochs 
of device output with noise rates ranging from 0.0 to 0.5. (Shaded area: std. N = 10). h Recognition accuracy after 20 training epochs of 10 
human actions versus the device output noise rate. (Shaded area: std. N = 10). i Recognition accuracy comparison between SNRs of 0.3 and 0.15, 
corresponding to the scenarios of unenhanced and preprocessed images, respectively. (Shaded area: std. N = 5)
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to achieve the perception and preprocessing of visual infor-
mation in simple devices, facilitating the development of 
compact and efficient artificial vision systems in the future.
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