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HIGHLIGHTS

• This review comprehensively presents recent advancements in spectrally selective daytime radiative cooling (SSDRC) materials, 
focusing on their fundamental characteristics, primarily concerning their structures and properties.

• The fabrication principles and corresponding operational mechanisms of several typical SSDRC materials are systematically introduced.

• Based on the latest research, this review highlights the innovative applications in personal thermal management, outdoor building cool-
ing, and energy harvesting, while also discussing the challenges and prospects for the future development of daytime radiative cooling.

ABSTRACT Daytime radiative cooling is an eco-friendly and passive cooling 
technology that operates without external energy input. Materials designed for 
this purpose are engineered to possess high reflectivity in the solar spectrum and 
high emissivity within the atmospheric transmission window. Unlike broadband-
emissive daytime radiative cooling materials, spectrally selective daytime radia-
tive cooling (SSDRC) materials exhibit predominant mid-infrared emission in the 
atmospheric transmission window. This selective mid-infrared emission suppresses 
thermal radiation absorption beyond the atmospheric transmission window range, 
thereby improving the net cooling power of daytime radiative cooling. This review 
elucidates the fundamental characteristics of SSDRC materials, including their 
molecular structures, micro- and nanostructures, optical properties, and thermo-
dynamic principles. It also provides a comprehensive overview of the design and 
fabrication of SSDRC materials in three typical forms, i.e., fibrous materials, mem-
branes, and particle coatings, highlighting their respective cooling mechanisms and 
performance. Furthermore, the practical applications of SSDRC in personal thermal management, outdoor building cooling, and energy 
harvesting are summarized. Finally, the challenges and prospects are discussed to guide researchers in advancing SSDRC materials. 
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1 Introduction

Human activities and technological advancements have 
culminated in persistent global warming, a challenge that 
is anticipated to intensify in the coming decade [1]. The 
quest for effective cooling solutions has emerged as a criti-
cal global priority among sustainability experts. Traditional 
cooling technologies, predominantly air conditioning sys-
tems, not only consume substantial electricity, thereby con-
tributing to heightened greenhouse gas emissions, but also 
exacerbate global warming due to the use of refrigerants. 
Consequently, there is an urgent need to identify innova-
tive green cooling technologies. Daytime radiative cooling 
(DRC) is emerging as a passive cooling technique without 
any energy consumption [2–4]. This approach facilitates 
the dissipation of thermal radiation from objects into the 
universe via the atmospheric transmission window (ATW) 
while simultaneously rejecting solar irradiation to reduce 
photothermal load [5–7]. Heat escapes from surfaces as ther-
mal radiation into the cold vacuum of space, resulting in a 
spontaneous temperature drop.

A diverse array of materials, including polymers [8–10], 
ceramic particles [11–13], photonic crystals [14–17], meta-
materials [18–20], and fibrous materials [10, 21–23], have 
been reported for DRC applications. These materials usually 
present broadband-emissive characteristics due to their non-
selective emissivity within the mid-infrared (MIR) wave-
length range. Hence, the high non-ATW emissivity of MIR 
broadband-emissive materials results in the absorption of 
excessive thermal radiation from the surrounding environ-
ment, which affects their daytime radiative cooling. Spec-
trally selective daytime radiative cooling (SSDRC) materials 
are characterized by their dominant emission in the ATW 
wavelength bands while exhibiting low emission in the non-
ATW ranges [24, 25]. Notably, SSDRC materials have three 
typical spectrum properties: (1) high reflectivity in the solar 
wavelength range to minimize sunlight absorption and miti-
gate photothermal effect; (2) high emissivity in the ATW 
range to facilitate thermal radiation dissipation into outer 
space; and (3) low emissivity in the non-ATW wavelength 
ranges to reduce thermal radiation absorption from the sur-
rounding environment. In recent years, numerous reviews 
have summarized the principles [5, 26], materials [27–29], 
fabrication methods [2, 30, 31], and practical applications 
[28, 30] of DRC materials, offering valuable guidance for 

the development of passive cooling technology. Zhou et al. 
presented a comprehensive and systematic review of the 
fundamental design principles and fabrication methods for 
flexible photonic radiative cooling films, highlighting their 
potential in diverse applications such as building facades, 
photovoltaic devices, water harvesting, energy generation, 
environmental protection, and personal thermal management 
[32]. Nevertheless, the review did not address the critical 
aspects of spectrum-selective emission and corresponding 
design strategies. Recently, Hsu et al. reported a laminated 
SSDRC fabric [25]. This SSDRC fabric consisted of a poly-
methylpentene nanofibrous film, silver nanowires, and wool 
fabric. polymethylpentene nanofibrous film exhibited high 
solar reflectivity and selective emission properties with high 
emissivity limited to the ATW region. Silver nanowires pro-
vide high reflectivity across the entire MIR region to pre-
vent infrared radiation from the surroundings to the human 
body. The wool fabric served as a broadband emitter, which 
absorbed thermal radiation from human skin through the 
textile-skin air gap and further conducted heat to the top 
PMP fabric via the silver nanowire layer. The nano–micro-
hybrid laminated structure design and spectrum-selective 
properties of this SSDRC fabric offered superior body cool-
ing performance compared to conventional non-selective 
DRC materials in hot outdoor scenarios [25, 33].

The general roadmap for the advancement of radiative 
cooling technology is illustrated in Fig. 1. The concept of 
radiative cooling was proposed over a century ago by Cata-
lanotti et al. achieving nighttime radiative cooling by design-
ing high-emissivity materials, particularly in the wavelength 
range of ATW [34]. Achieving daytime radiative cooling 
below ambient temperature remains challenging due to the 
photothermal effects of solar radiation, which often out-
weighs the outgoing thermal radiation to space. The first the-
oretical design for daytime radiative cooling was proposed 
by Raman et al. in 2013 [35]. Subsequently, they experimen-
tally developed a DRC cooler using an integrated photonic 
solar reflector and thermal emitter in 2014 [7]. Since then, 
DRC has expanded greatly. Yin et al. reported a metamate-
rial membrane composed of a polymer layer embedded with 
silicon dioxide microspheres, backed by nanothickness silver 
[18]. This metamaterial membrane exhibited high daytime 
radiative cooling, leveraging the high emissivity of sili-
con dioxide microspheres within the ATW region and the 
high reflectivity of silver. Early DRC materials necessitate 
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Fig. 1  Materials and structure development of radiative cooling technology. Reproduced with permission from [35].  Copyright 2013, American 
Chemical Society. Reproduced with permission from [7]. Copyright 2014, Springer Nature. Reproduced with permission from [18]. Copyright 
2017, AAAS. Reproduced with permission from [36]. Copyright 2018, AAAS. Reproduced with permission from [39]. Copyright 2019, AAAS. 
Reproduced with permission from [40]. Copyright 2020, Elsevier. Reproduced with permission from [10]. Copyright 2021, Springer Nature. 
Reproduced with permission from [132]. Copyright 2021, Springer Nature. Reproduced with permission from [44]. Copyright 2023, AAAS. 
Reproduced with permission from [52]. Copyright 2025, AAAS. Reproduced with permission from [191]. Copyright 2024, Springer Nature. 
Reproduced with permission from [51]. Copyright 2024, Royal society of chemistry
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meticulous fabrication processes, often involving nanoscale 
and periodic-structure processing. These fabrication meth-
ods are intricate, relying on techniques such as photolithog-
raphy and electron beam evaporation. Subsequently, with the 
discovery of many MIR selective-emissive materials [10, 18, 
36–38], the development of DRC materials has seen signifi-
cant progress, with a particular focus on the optimization 
of their solar reflectivity through the design of randomly 
arranged structures. Various random porous materials, 
including porous membranes [36], bulk materials [39], and 
nanofibrous materials [40], have been extensively studied. 
The random porous architecture of these materials enhances 
broadband sunlight scattering through Mie scattering, sig-
nificantly improving their solar reflectivity. The materials 
and structure design of SSDRC materials were first explored 
by Zhu et al. [10]. They theoretically calculated that an ideal 
selective emitter could achieve a larger temperature drop 
than a non-selective emitter. They fabricated a polyethyl-
ene oxide nanofiber film with selective emission in the MIR 
range and experimentally verified its cooling advantages. 
Subsequently, a range of SSDRC materials, including fibers 
[10, 41], membranes [42], and ceramic particles [43, 44], 
were developed in succession. Advances in materials and 
photonic structure design have enabled SSDRC materials 
to achieve nearly perfect solar reflectivity. For instance, Tso 
et al. prepared a cellular ceramic composed of anisotropic 
porous networks [44]. This ceramic features a biomimetic 
porous structure, which efficiently scatters solar irradiation 
to achieve a sunlight reflectivity of 99.6%. With the rapid 
development of SSDRC technology, recent efforts have 
focused on novel applications such as electricity generation 
[45–47], electronic skin technology [48–50], and water har-
vesting [51]. Notably, our group presented large-area ther-
moelectric fabrics based on carbon nanotubes thermoelectric 
arrays and poly(vinylidene fluoride-co-hexafluoropropylene) 
(PVDF-HFP) SSDRC membranes, addressing thermal man-
agement and electricity generation in self-powered wearable 
applications [52]. Moving forward, the prospects of SSDRC 
emphasize multifunctional integration, dynamic thermal 
management, and practical real-world applications. So far, 
a comprehensive overview of the materials, structures, and 
design principles used for making high-performance SSDRC 
materials, and their adaptive applications for various energy 
management applications remains absent in the field.

In this review, the design and fabrication of SSDRC 
materials and structures for highly efficient cooling and 

applications are discussed. As shown in Fig. 2, we first ana-
lyze the fundamental characteristics of SSDRC materials, 
including their molecular structures, micro- and nanostruc-
tures, optical properties, and thermodynamic principles. Sub-
sequently, we comprehensively discuss the design and fab-
rication of three typical SSDRC materials, including fibers, 
membranes, and particle coatings, and address their optical 
properties and corresponding cooling mechanisms. Addition-
ally, we review the practical applications of SSDRC materials 
in personal thermal management, outdoor building cooling, 
and energy harvesting. Finally, the remaining challenges and 
prospects associated with SSDRC materials are considered. 
By presenting the advancements in SSDRC materials and 
structures, the review aims to provide a comprehensive and 
updated reference, inspire innovative ideas, and advance the 
applications of radiative cooling technologies.

2  Fundamental Characteristics of SSDRC 
Materials

The distinctive characteristic of SSDRC materials is their 
selective emission in the MIR wavelength range, compared 
with broadband emissive DRC materials. The spectrum-
selective property in the MIR range is primarily attributed 
to the material’s optical control over light across various 
wavelengths, which is predominantly determined by the 
molecular and micro-/nanostructures of SSDRC materials.

2.1  Molecular Structures of SSDRC Materials

The position of the infrared absorption peak is intrinsi-
cally related to the vibrational and rotational transitions 
of chemical bonds or functional groups within materials. 
Figure 3a illustrates the wavelength distribution of absorp-
tion peaks corresponding to the vibrational modes of vari-
ous chemical bonds. Bending and stretching vibrations of 
chemical bonds generally occur within 400–4000   cm−1 
(2.5–25 μm). Strong molecular vibrations in the ATW range 
are observed for Si–O–Si (8.3–10 μm), C–F (7.4–10 μm), 
S=O (9.4–9.8 μm), C–N (8.2–9.8 μm), C–H (11.1–14.3 μm), 
and C–O (7.6–9.5 μm), among others. These vibrations reso-
nate with infrared waves, resulting in significant absorption/
emission. Molecular vibrations associated with other chemi-
cal bonds or functional groups that fall outside the ATW 
region, such as N–H, O–H, C=C, C=N, amide, carboxyl, 
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and benzene ring, have infrared emission in the non-ATW 
wavelength range. These characteristic molecular structures 
are unsuitable for SSDRC. Moreover, π bonds and conju-
gated π bonds exhibit strong absorbance of sunlight, which 
can lead to solar heating and adversely affect the radiative 
cooling effect.

2.2  Micro‑ and Nanostructures of SSDRC Materials

To achieve deep sub-ambient cooling under direct sunlight, 
SSDRC materials must effectively reflect solar radiation and 

emit within the atmospheric transmission window. Conse-
quently, the structures of SSRC materials must be designed to 
precisely control electromagnetic properties. Recent research 
reported that the electromagnetic properties of SSDRC materi-
als can be manipulated through tailored micro-/nanostructures 
[2]. SSDRC materials reported to date can be categorized into 
three structures: multilayer structures [7, 53], metamaterials 
[54, 55], and random porous structures [56, 57]. Multilayer 
structures are composed of periodically stacked materials with 
different refractive indices (e.g.,  TiO2/SiO2), forming photonic 
bandgaps through Bragg scattering. This suppresses solar spec-
trum absorption while enhancing ATW thermal emission by 

Fig. 2  Scope of this review on the recent research progress in SSDRC materials
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wavelength-correlated photonic bandgap design [7, 35]. Their 
electromagnetic regulation mechanism originates from destruc-
tive interference caused by multiple reflections at the inter-
faces. Additionally, a bottom metal layer of Ag/Al can enhance 
UV–Vis reflection due to its high conductivity [58]. Although 

the photonic bandgap of such structures can be precisely tuned, 
their fabrication relies on high-precision deposition techniques 
like magnetron sputtering, resulting in relatively high manufac-
turing costs [59]. These structures are suitable for applications 
with stringent spectral selectivity requirements, such as thermal 

Fig. 3  Molecular structures and optical properties of SSDRC materials. a Spectra of the partial chemical bonds and functional groups in the 
wavelength region from 0.25 to 25 μm. The normalized solar spectrum (AM1.5 G, orange shaded area), the atmospheric transmission spectrum 
(blue shaded area), and the human body radiation (red dashed line) are indicated as references. b Optical properties (i, iii, v) and the correspond-
ing spectra (ii, iv, vi) of ideal solar-reflective materials, MIR-transparent materials, and MIR-emissive materials, respectively. c Optical proper-
ties (i) and the radiative spectrum (ii) of ideal SSDRC materials
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control systems in space [60]. The metamaterial is derived from 
the Greek language whose meaning is superior/beyond. Meta-
materials are defined as artificially engineered composite struc-
tures or materials that exhibit extraordinary physical properties 
absent in naturally occurring substances [61–63]. Their funda-
mental characteristic lies in their ability to exhibit extraordinary 
physical properties unattainable in natural materials, including 
negative refractive index, negative permeability, negative per-
mittivity and so on. Based on their target physical fields and 
application domains, metamaterials are systematically classi-
fied into electromagnetic metamaterials, acoustic metamaterials, 
mechanical metamaterials, thermal metamaterials and optical 
metamaterials [64]. Random porous structures enhance solar 
reflection through light scattering induced by nano-/microscale 
particles or pores [65]. Their electromagnetic mechanism relies 
on impedance mismatch-induced Rayleigh scattering and Mie 
scattering, while the molecular vibrational modes of porous pol-
ymers can simultaneously enhance atmospheric window emis-
sion. These structures are compatible with low-cost fabrication 
processes (e.g., spraying, phase separation, electrospinning), but 
their scattering efficiency is limited by particle size distribution. 
They are widely used in applications such as architectural coat-
ings and smart textiles [10, 36, 43, 44].

2.3  Optical Properties of SSDRC Materials

We discuss several cooling materials, including solar-reflective 
materials [66], MIR-transparent materials [67–69], MIR-emis-
sive materials, and SSDRC materials, and compare their optical 
properties. As illustrated in Fig. 3b, solar-reflective materials 
exhibit high reflectance in the solar spectrum, effectively pre-
venting the photothermal effect. Various solar-reflective materi-
als have been developed for daytime cooling, including metals 
such as silver and aluminum, inorganic materials like silicon 
dioxide  (SiO2), alumina  (Al2O3), titanium dioxide  (TiO2), zinc 
oxide (ZnO), and special photonic materials such as photonic 
crystal and optical metamaterial [70]. Szeto et al. demonstrated 
a cotton fabric with irregularly shaped  TiO2 particle coatings 
as a solar reflector, which led to a temperature reduction of 
3.91 °C [71]. Solar-reflective materials are primarily engineered 
to reflect solar radiation under direct sunlight, suggesting their 
effectiveness diminishes in other hot conditions. Solar-reflective 
materials are effective in reflecting solar radiation but cannot 
emit thermal radiation efficiently, limiting their cooling perfor-
mance in non-sunlit conditions. In contrast, MIR-transparent 

materials exhibit high transmittance within the MIR wavelength 
range. Under typical indoor conditions, particularly at tempera-
tures below that of the human body, radiation accounts for over 
50% of the total heat loss of the human body [72]. Consequently, 
thermal radiation from the human body can be effectively emit-
ted outside through MIR-transparent materials. For instance, 
Cui et al. reported a MIR-transparent nanoporous polyethylene 
(nano-PE) film [69]. This film featured interconnected pores that 
are 50 to 1000 nm in diameter, comparable in size to the wave-
length of visible light, which strongly scattered visible light and 
made nano-PE opaque to human eyes. Moreover, the pore sizes 
were much smaller than the IR wavelength, so the nano-PE film 
remained highly transparent to mid-infrared light. The average 
transmittance of nano-PE was 96%, and it exhibited a superior 
cooling effect under indoor conditions. Compared to nano-PE 
films, PE yarns demonstrate superior advantages in personal 
thermal management applications due to their superior breatha-
bility and flexibility. Boriskina et al. fabricated PE fibers, yarns, 
and fabrics through melt spinning and weaving [73]. The result-
ing PE fabrics exhibited radiative cooling properties and excel-
lent stain resistance, offering promise in reducing energy and 
water consumption during their operational phase. Currently, 
MIR-transparent materials are not engineered to reflect sunlight. 
The selection of materials for MIR-transparent radiative cool-
ing requires a reduction in the content of functional groups that 
absorb sunlight.

MIR-transparent materials are effective for indoor human 
body cooling; however, implementing radiative cooling in out-
door applications, particularly for cooling objects, poses sig-
nificant challenges. Currently, substantial research efforts are 
directed toward MIR-emissive cooling materials for outdoor pas-
sive radiative cooling. In general, high MIR-emissive materials 
are combined with high solar emissivity to maximize daytime 
radiative cooling efficiency. Hu et al. reported an artificial cool-
ing wood [38]. This innovative material was produced through 
complete delignification and compression processes, resulting 
in a nanocellulose structure capable of effectively backscatter-
ing sunlight and strongly emitting in the MIR region, thereby 
achieving a DRC effect. Calculations indicated that the use 
of this cooling wood in construction could lead to savings of 
20–60% in energy consumption.

MIR-emissive materials, while effective in broad-spectrum 
thermal emission, often lack the spectral selectivity required 
to maximize radiative cooling efficiency during daytime. In 
contrast, SSDRC materials combine high solar reflectivity with 
selective MIR emissivity within the atmospheric transmission 
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window, enabling them to achieve efficient daytime radia-
tive cooling. This dual functionality makes SSDRC materials 
uniquely suited for both solar reflection and thermal emission, 
addressing the limitations of other cooling materials. In detail, 
the spectrum is divided into three segments: the solar wavelength 
range (0.25–2.5 µm), the ATW wavelength range (8–13 µm), 
and the non-ATW wavelength range (2.5–8 µm and 13–25 µm). 
As illustrated in Fig. 3c, SSDRC materials possess high solar 
reflectivity, high ATW emissivity, and low non-ATW emissivity. 
SSDRC materials are engineered to reflect solar radiation while 
selectively emitting thermal radiation within the ATW range, 
where the atmosphere is most transparent. This minimizes heat 
absorption and maximizes heat dissipation. The low emissivity 
outside the ATW range further reduces unwanted heat exchange 
with the environment, enhancing cooling efficiency. These prop-
erties make SSDRC materials ideal for outdoor applications, 
where both solar reflection and thermal emission are critical for 
effective cooling. Table 1 provides a comprehensive comparison 
of the optical properties and cooling mechanisms of different 
cooling materials. Solar-reflective materials demonstrate high 
solar reflectivity, rendering them highly efficient for cooling in 
outdoor environments under intense sunlight. However, they 
exhibit limited cooling capabilities in indoor or non-sunlight 
conditions. Conversely, MIR-transparent materials enable the 
radiation of human body heat into the surrounding environ-
ment, making them particularly suitable for indoor or low-light 
scenarios. Broadband MIR-emissive materials, which dissipate 
human body heat through the atmospheric transmission win-
dow, are frequently integrated with solar-reflective materials to 
substantially improve outdoor cooling performance. In contrast, 
SSDRC materials synergize high solar reflectivity with selective 

MIR emissivity within the ATW. This combination not only 
enhances solar reflectivity but also reduces the heat load in the 
non-ATW range compared to broadband MIR-emissive materi-
als, thereby achieving superior cooling performance.

An ideal SSDRC material would exhibit 100% ATW emis-
sivity and zero non-ATW emissivity. To quantitatively evalu-
ate the spectrum selective of different SSDRC materials, the 
selective ratio, γ, was chosen as a quality factor to evaluate the 
MIR-emissive selection of SSDRC materials. γ is defined as the 
ratio of the average emissivity within the ATW to the emissivity 
within the non-ATW [25]. For typical radiative cooling applica-
tions, γ is expressed as Eq. 1:

where ε(λ) represents the emissivity at wavelength λ.
However, for ultra-high-temperature objects, the definition of 

selective ratio γ is different. Wien’s displacement law describes 
the spectral characteristics of thermal radiation, revealing an 
inverse relationship between blackbody temperature and peak 
emission wavelength. The law exhibits the product of the black-
body’s absolute temperature (T) and its spectral radiation peak 
wavelength (λmax) is a constant, expressed mathematically as 
Eq. 2 [74]:

where b is the Wien’s displacement constant (0.897 µm K). 
This law indicates that the peak wavelength of thermal radi-
ation shifts toward shorter wavelengths as the blackbody 
temperature increases. This shift highlights the impor-
tance of the 3–5 μm wavelength range for radiative cooling 
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Table 1  Optical properties and cooling mechanisms of different cooling materials

Material types Optical properties Cooling mechanism Application scenario Typical materials

Solar-reflective materials High solar reflectivity Reflect solar irradiation Outdoor sunny condition Metals (Ag, Ti, Al, etc.) 
[217], natural com-
pounds (e.g., chloro-
phyll), photonic crystals 
[18, 70]

MIR-transparent materials High mid-infrared transmit-
tance

Thermal radiation emit-
ted by the human body 
directly transmits to the 
environment

Indoor scene and cloudy 
day

MIR-transparent nano-PE 
microfibers and nano-PE 
membranes [69]

Broadband MIR-emissive 
materials

High mid-infrared emis-
sivity

Emit human body thermal 
radiation to outer space

Outdoor condition Natural polymers like silk 
[111], wool [218], cel-
lulose [219]

SSDRC materials High solar reflectivity, high 
ATW emissivity, low 
non-ATW emissivity

Reflect solar irradiation and 
selectively emit thermal 
radiation

Outdoor and sunny condi-
tion

As presented in Table 3
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in extreme conditions. Specifically, for blackbodies with 
temperatures exceeding 331 °C, the proportion of thermal 
radiation within the 3–5 μm range surpasses that within 
the 8–13 μm range, despite the narrower bandwidth of the 
former [75]. To account for this phenomenon in ultrahigh-
temperature environments, such as those encountered in arid 
regions, hot regions, and aerospace applications, the defini-
tion of spectral selectivity is modified as Eq. 3:

The selective ratio γ and optical properties of some 
polymers and fabrics are listed in Table 2. PMP contains 
only C–C (954 to 1004  cm−1), -CH2 (1176 to 1241  cm−1), 
–CH (862 to 881  cm−1), and –CH3 (931  cm−1) bonds, lead-
ing to MIR absorption exclusively within the atmospheric 
transmission window range. Consequently, PMP displays 
a high selectivity ratio of 2.34, followed by PEO, PVDF-
HFP, POM, and PP. Moreover, the molecular structures 
of materials like PET, cotton, silk, and wool, are pre-
dominantly composed of benzene rings and amino acids, 
whose infrared absorption peaks fall outside the atmos-
pheric transmission window. As a result, they exhibit a 
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selectivity ratio close to 1, highlighting their broadband-
emissive properties.

2.4  Thermodynamic Concepts of SSDRC Materials

As shown in Fig. 4a, SSDRC materials exhibit high solar 
reflectance and selective MIR emission in the ATW region. 

To highlight the cooling effect of ideal SSDRC materials, we 
calculate and compare their cooling power with that of non-
selective materials. Cooling power is selected as the primary 
parameter for evaluating the performance of radiative coolers. 
The net cooling power is calculated by Eq. 4.

Pemi is the power emitted from the emitter. Here, Ω is a 
solid angle, θ denotes the angle between the direction of the 

(4)p
cool

= P
emi

− P
sun

− P
atm

− Pc

(5)P
emi(T) = A

∫
dΩ cos �

∞

∫
0

d�I
BB(T , �)�(�, �)

Table 2  Emissive properties and selective ratios of typical radiative cooling materials [25]

a PMP polymethylpentene, PEO polyethylene oxide, PVDF-HFP polyvinylidene fluoride-hexafluoropropene, POM polyoxymethylene, PP poly-
propylene, PI polyimide, PA polyamide, PE polythene, PET polyethylene terephthalate
b SP synthetic polymer
c NP natural polymer

Materials (a) Molecular structures Attributes Average ATW 
emissivity (%)

Average non-ATW 
emissivity (%)

Selective ratio

PMP C–C, –CH, –CH2, –CH3 SP (b) 85 15 2.34
PEO C–C, –CH2, –CO SP 90 30 1.9
PVDF-HFP [36] C–C, –CF, –CF2 SP 97 50 /
POM [41] –CH2, –CO SP 75.9  ~ 27 /
PP C–C, –CH, –CH2, –CH3 SP 92 40 1.65
PI –CONH–, –COOH, –NH2 SP 92 90 1.15
PA –CONH–, –NH2 SP 95 94 1.05
PE C–C, CH SP 30 30 0.85
PET C = O, C–O–C, –CH2, benzene ring SP 85 80 1.21
Silk amino acids, hydrogen bond, etc. NP (c) 95 95 1.01
Wool amino acids, hydrogen bond, etc. NP 95 95 1
Cotton –OH, CH, –COO, benzene ring, hydro-

gen bond, etc.
NP 95 95 1.01
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solid angle and the normal direction of the surface, ε(λ, θ) is 
the emissivity of the object at a wavelength λ and angle θ, and 
IBB(T, λ) is the spectral irradiance of a blackbody.

Patm is the downward radiation from the atmosphere that is 
absorbed by the radiative cooler. εatm(λ, θ) is the emissivity of 
the atmosphere.

Pc is the heat load from the conductive and convective 
heat exchange with the environment. h is a combined non-
radiative heat transfer coefficient.

As illustrated in Fig. 4b, a blackbody exhibits a broad-
band emission within the wavelength range of 3–25 µm, with 
an emissivity of 100%. In contrast, an ideal SSDRC mate-
rial displays emission only within the 8–13 µm range, with 
zero emissivity outside this interval. We compare the cool-
ing power of the ideal SSDRC with that of the blackbody. 
Cooling powers Pcool as a function of the temperatures are 
calculated using Eq. 4. Here, we assume an ambient tem-
perature Tatm of 20 °C, zero solar absorption (Psun = 0), and 
thermal insulation with the environment (h = 0). As illus-
trated in Fig. 4c, when the temperature of an object sub-
stantially falls below the ambient temperature, the cooling 
power of ideal SSDRC material markedly surpasses that of 
the blackbody, indicating its superior passive cooling perfor-
mance. The shaded area in Fig. 4c delineates the material’s 

(6)

P
atm

(

T
atm

)

= A
∫

dΩ cos �

∞

∫
0

d�I
BB

(

T
atm

, �
)

�
atm(�, �)�(�, �)

(7)Pc = Ah
(

T
atm

− T
)

radiative cooling range, demonstrating that SSDRC exhibits 
a more pronounced radiative cooling effect across a broader 
temperature range compared to the blackbody.

3  Design and Fabrication of SSDRC 
Materials

The design and preparation of SSDRC materials involves 
utilizing MIR spectral selective materials as primary com-
ponents, which are then designed to achieve high solar 
reflectivity and thus enable spectral selection over the entire 
spectral range. Recent reviews have reported many meth-
ods for regulating the reflectivity of solar light. The optical 
properties of SSDRC materials within the solar spectrum 
can be tailored through engineered micro-/nanostructures 
[2], which primarily include multilayer structures [76–78], 
metamaterial structures [19, 78, 79], and porous structures 
[42, 80–82]. The optical manipulation of these structural 
materials is based on principles of photonic bandgap [14, 
83, 84], Fabry–Pérot resonance [85], and random scattering 
[78, 86–88]. When light encounters an object, it interacts 
with its atoms or molecules, leading to scattering in vari-
ous directions. This scattering phenomenon is influenced by 
refractive index differences, surface irregularities, or particle 
sizes. Mandal et al. demonstrated through FDTD simula-
tions that a broadly distributed range of pore sizes, from 
50 nm to 5 μm, can effectively scatter the entire solar spec-
trum [36]. Through randomly distributed micro/nanoparti-
cles or pores, a broad light-scattering effect is generated, 
resulting in high solar reflectivity. Fibrous materials, porous 

Fig. 4  Cooling power calculation of ideal SSDRC materials. a Schematic of the radiative heat transfer process of SSDRC materials. b MIR-
emissive spectra of ideal SSDRC materials and the blackbody. The background is the atmospheric transmission window. c Cooling power curves 
of the radiative cooler as a function of their temperatures, with the black curve representing the blackbody, and the red curve representing ideal 
SSDRC materials
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membranes, and particle coatings have high solar reflectivity 
due to their capacity for random sunlight scattering. In this 
section, we primarily discuss three typical types of SSDRC 
materials: fibers, membranes, and particle coatings. These 
materials represent classic and widely studied approaches in 
the field of radiative cooling. Beyond these three categories, 
other novel material types and designs, including fluorescent 
materials, hydrogels and bio-mass materials, are detailed 
in Table 3. This table comprehensively summarizes their 
unique properties, preparation methods, and technological 
innovations, providing a broader perspective on the diversity 
and advancements in SSDRC materials.

3.1  Fibers

Micro-/nanofibrous materials effectively scatter sunlight via 
their porous morphological structures and multiscale pore 
distributions [28]. Here, we discuss the fabrication, struc-
tures, and performance of SSDRC fibrous materials, focus-
ing on nanofibrous materials, and laminated fabrics.

3.1.1  SSDRC Nanofibrous Materials

Electrospinning has emerged as a versatile technique for 
fabricating micro-/nanofibrous film, primarily due to its 
tunability in pore structure through adjustments of elec-
tric field parameters and solution properties (e.g., viscos-
ity, conductivity) [89–91]. The electrospinning process, 
characterized by the interplay of electric fields, airflow, 
fiber entanglement, and solution attributes, produces fib-
ers with random distributions. Such porous architecture is 
advantageous for sunlight reflection. Using Mie theory, the 
scattering efficiency of nanofibers as a function of diam-
eter across the solar spectrum reveals that nanofibers with 
diameters ranging from 500 to 1200 nm can effectively 
scatter sunlight (especially in the 0.3–1.2 μm wavelength 
range, which covers the majority of the solar wavelength 
range) [10]. Currently, reported SSDRC nanofibrous mate-
rials include polymer nanofibers (PEO, PVDF-HFP, PLA, 
PMP, etc.) (Fig. 5a), ceramic nanofibers  (SiO2,  Al2O3, etc.), 
and hybrid nanofibers. A critical challenge lies in balanc-
ing the high light-scattering efficiency with the mechanical 
stability and environmental tolerance. For instance, while 
Zhu et al. demonstrated that PEO nanofibrous film (Fig. 5b) 
achieves 96.3% solar reflectivity through broad diameter 

distributions centered at 800 nm [10], this design relying 
on C–C/C–O bond-mediated selective absorption may face 
long-term chemical degradation under UV irradiation, a 
risk not explicitly addressed in the original study. In con-
trast, ceramic nanofibers (e.g.,  SiO2,  Al2O3) exhibit supe-
rior photothermal stability but suffer from brittleness and 
high manufacturing costs, limiting their scalability. This 
dichotomy suggests that future research should prioritize 
organic–inorganic hybrid systems. This contrast indicates 
that future studies should focus on developing organic–inor-
ganic hybrid systems. For example, combining PEO’s flex-
ible structure with ceramic coatings could create materials 
that simultaneously enhance both optical properties and 
durability. Beyond electrospinning, a common method for 
nanofiber production, other techniques such as solution blow 
spinning [92–94], centrifugal spinning [95], wet spinning 
[96], microfluidic spinning [97], and melt spinning [98] 
are also used to create micro-/nanofibrous materials. These 
methods are particularly valuable for developing nanofiber 
films with radiative cooling capabilities. For example, Chen 
et al. fabricated a multilayered fabric through solution blow 
spinning, incorporating nylon 66 nanofibers, silver par-
ticles, and colloidal photonic crystal coatings [92]. This 
innovative design demonstrated significant passive radia-
tive cooling performance, achieving a temperature reduc-
tion of 7.9 °C under direct solar irradiation. Melt spinning 
provides an effective method for uniformly incorporating 
radiative cooling micro/nanoparticles into polymer matri-
ces through an integrated process of high-temperature melt-
ing, mechanical drawing, and rapid quenching to produce 
continuous filament fibers. Compared to non-woven fabrics 
produced by electrospinning or blow spinning, melt-spun 
filament fibers offer distinct advantages for textile applica-
tions, including superior mechanical properties for knitting 
and weaving processes and improved dye uptake and color 
fastness. A representative demonstration by Tao et al. [98] 
employed this technique to fabricate  TiO2-PLA metafibers 
through a systematic process. First,  TiO2-PLA composite 
materials were fabricated using a twin-screw extruder at a 
specific mass ratio and a high temperature of 205 °C. Then, 
post-cooling  TiO2-PLA composite materials were spun to 
fabricate the metafibers using a melt spinning machine. 
Finally, the metafibers were stretched and collected on the 
draw winder machine. The  TiO2-PLA metafibers exhibited 
superior tensile properties with an elongation of 29.5% and a 
breakage strength of 1.886 cN per decitex, which are flexible 
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and strong enough to be stitched via a commercial sewing 
machine.

Ceramics offer superior resistance to thermal, ultraviolet 
radiation, and chemical corrosion compared to polymers, 
therefore, various SSDRC ceramic nanofibers are dem-
onstrated [99–103]. However, their inherent brittleness 
and high fabrication costs remain significant barriers to 
widespread adoption. For instance, Zhang et al. achieved 
94% solar reflectivity and 94% ATW emissivity in  SiO2 
nanofibrous films via blow spinning and annealing [93] 
(Fig. 5c). This method’s reliance on high-temperature cal-
cination raises concerns about energy consumption and scal-
ability. Similarly, Sun et al. addressed silica’s fragility by 
incorporating  Al2O3 into electrospun nanofibers, forming 
a multilayer network that enhanced mechanical integrity 
and achieved 95% solar reflectivity with 5 °C sub-ambient 
cooling [101] (Fig. 5d). Yet, the trade-off between mechani-
cal reinforcement and optical performance remains poorly 
understood. Increasing alumina content might accidentally 
lower porosity, which could decrease radiative cooling effi-
ciency. Hybrid polymer/ceramic systems [104], such as 
PVDF-HFP/SiO2 [105] and polyethersulfone (PES)/Al2O3 
[106] nanofibers (Fig. 5e and f), attempt to reconcile flex-
ibility with durability. PVDF-HFP/SiO2 film leveraged 
molecular vibrations and phonon-polarization effects to 
achieve 95% MIR emissivity [105], yet its long-term sta-
bility under cyclic thermal stress remains unverified. Dual-
mode textile exemplifies innovation in adaptive thermal 
management [106], combining a PES/Al2O3 cooling layer 
(97% solar reflectivity) with an MXene warming layer (85% 
solar absorptance). While this design demonstrates versatil-
ity, its complexity creates manufacturing challenges. The 
system requires the integration of different materials with 
opposing properties, specifically in terms of hydrophilicity 
and interfacial adhesion. Additionally, the MXene heater 
depends on electrical conductivity for Joule heating during 
low solar conditions. This energy requirement may restrict 
its use in off-grid applications.

3.1.2  SSDRC Laminated Fabrics

Laminated fabrics enhance the overall radiative cooling 
performance by combining different layers of fibers, uti-
lizing the special optical and thermal properties of each 
layer to achieve spectral selection among the solar and MIR Ta
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spectra [98, 107–110]. SSDRC laminated fabric includes 
bilayer fabrics and tri-layer fabrics. The double-layer fab-
rics are mainly composed of nanofibers and woven fabrics. 
As shown in Fig. 6a, nanofibers are typically used as spec-
trally selective materials and high solar reflectance materi-
als, while the breathability and mechanical properties of the 
woven fabric make it suitable for application in the cloth-
ing industry. In addition, endowing the woven fabric with 
a metamaterial structure can further improve the radiative 
cooling performance of the bilayer fabric. For instance, Tao 
et al. designed a bilayer metamaterial fabric, knitted with 
composite microfibers that incorporated random metamate-
rial structures (Fig. 6b) [98]. The bottom layer consisted 

of a titanium oxide-polylactic acid  (TiO2-PLA) woven 
fabric, which embodied nanobeads with diameters rang-
ing from 200 to 1000 nm and nanofibers with lengths of 
several micrometers. The top layer was a 50-μm-thick pol-
ytetrafluoroethylene (PTFE) film, which effectively reflect 
ultraviolet light. Additionally, PLA microfibers, which have 
C=O,  CH3, CH, C–O, and C–C chemical bonds, provided 
rich emittance in the MIR wavelength range. The hierar-
chical morphology design endowed the PTFE/TiO2-PLA 
metamaterial fabric with a solar reflectivity of 92.4% and 
an average ATW emissivity of 94.5% through hierarchi-
cal structures. While innovative, this design’s reliance on 
PTFE films raises concerns about breathability, as PTFE’s 

Fig. 5  SSDRC nanofibrous materials. a Typical SSDRC polymer nanofibers. b PEO SSDRC nanofibers. (i) Schematic of infrared emission by 
C–O–C bond vibrations of PEO molecular chains and Mie scattering from micro-/nanostructures of PEO nanofiber film. (ii) Solar reflectance 
and MIR emission spectra of PEO nanofibers. Reproduced with permission from [10].  Copyright 2021, Springer Nature. c Schematic structure 
and solar reflectance spectra of  SiO2 nanofibers. Reproduced with permission from [93]. Copyright 2024, Elsevier. d MIR emission spectrum 
(2.5–25 μm) of  SiO2/Al2O3 nanofibers. Reproduced with permission from [101]. Copyright 2023, Elsevier. e Schematic fabrication of PVDF-
HFP/SiO2 nanofibers. Reproduced with permission from [105]. Copyright 2022, American Chemical Society. f The reflectance spectrum (0.3–
16 μm) of PES/Al2O3 nanofibers. Reproduced with permission from [106]. Copyright 2023, John Wiley and Sons
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low moisture permeability may compromise wearer comfort 
in humid environments. The multistep fabrication processes 
of melt spinning, weaving, and lamination pose scalability 
challenges when compared to single-step electrospinning. 
This underscores the need to simplify manufacturing proto-
cols to balance performance with industrial feasibility.

Tri-layer fabrics demonstrate superior potential for wear-
able radiative cooling compared to bilayer designs, primarily 
due to their capacity to integrate directional heat transfer 
mechanisms. As shown in Fig. 6c, the middle layer of PMP/
AgNW/wool fabric is silver nanowires, which have high 
thermal conductivity and can quickly transfer the heat from 
the skin to the outer high-emissive PMP nanofibers. The 
PMP layer exhibited a high selective ratio of 2.23 and an 
average ATW emissivity of 0.85 [25]. PMP had a wide range 
of size distributions owing to the sequential volatilization of 
solvent during electrospinning, which enabled a wideband 
scattering efficiency that covers the entire solar spectrum. 
PMP only had C–C, –CH2, –CH, and –CH3 bonds, resulting 
in high absorption primarily in the ATW range (Fig. 6d). 
The bottom wool fabric absorbed thermal radiation emitted 
by the skin, which was then conducted through the AgNW 
to the surface PMP fabric for selective thermal emission, 
thereby enhancing the cooling capability. Zhang et al. devel-
oped a multilayer silk fabric consisting of three layers of 
fabric [111]. The multilayer silk fabric was composed of a 
PTFE film, a commercial silk fabric, and electrospun silk 
nanofibers. The electrospun silk nanofibers featured a hierar-
chical structure that enhanced sunlight scattering and offered 
remarkable thermomechanical stability. The PTFE film and 
commercial silk fabrics provided ultraviolet reflectance and 
mechanical strength. The excellent mechanical performance, 
surface hydrophobicity, and ultraviolet resistance endowed 
the multilayer silk fabric with outdoor durability, including 
high solar reflectance (96.5%) and MIR emittance (97.1%). 
SSDRC laminated fabrics allow precise control over the 
thickness, material composition, and optical properties of 
each layer, enabling highly tunable cooling performance. 
By selecting specific interlayer materials, SSDRC lami-
nated fabrics can be endowed with multiple functionalities 
such as breathability, antifouling properties, and mechani-
cal strength. The application of moisture-driven materials 
in laminated fabrics offers innovative and efficient solu-
tions for personal thermal management [112–114]. Firstly, 
dynamic modulation of infrared emissivity can be achieved 
by regulating the moisture adsorption and release behavior 

of fabrics, thereby optimizing cooling performance. For 
instance, adaptive textiles based on  Ti3C2Tx MXene enable 
infrared emissivity modulation from 12 to 68% through the 
intercalation and deintercalation of water molecules between 
layers [115]. This mechanism allows real-time adjustment of 
thermal radiation in response to environmental humidity or 
human sweat. Secondly, multilayer fabrics with diode-like 
unidirectional transportation properties, achieved through 
Janus wettability design, enhance sweat evaporation cool-
ing and improve comfort. For example, Hu et al. developed 
a wettability-gradient-induced-diode (WGID) membrane 
using MXene-engineered electrospun technology (Fig. 6e) 
[112]. This membrane facilitates heat dissipation and mois-
ture-wicking transportation, achieving a cooling temperature 
of 7.1 °C due to its high ATW emissivity of 96.4% and uni-
directional moisture transportation properties.

3.2  Membranes

Porous membranes can be categorized into different types, 
such as random porous membranes, ordered porous mem-
branes, and gradient porous membranes. In this section, we 
discuss the preparation and impact of these porous structures 
on the performance of SSDRC materials.

The structure of a random porous membrane is character-
ized by uniformly sized pores that are randomly distributed 
throughout its interior (Fig. 7a-i) [116]. Solar reflectance 
can be further optimized by tailoring the porous structures 
to regulate the membrane’s light-scattering properties across 
the solar spectrum. The pore sizes of the random porous 
membranes vary from 50 nm to 5 μm, enabling effective 
scattering of light across the entire solar spectrum. Phase 
separation is one of the simplest and most effective meth-
ods for preparing random porous membranes. Under specific 
conditions, such as temperature changes, solvent evapora-
tion, or the addition of a non-solvent, a polymer solution 
undergoes phase separation, forming polymer-rich and 
solvent-rich phases. These phases eventually solidify into a 
porous structure. Additionally, the formation and growth of 
the polymer-rich phase during phase separation are random, 
leading to a random distribution and size of the pores. For 
instance, Yang et al. prepared a randomly porous PVDF-
HFP membrane through a phase-inversion method (Fig. 7a-
ii) [36]. The precursor solution, consisting of PVDF-HFP, 
acetone (solvent), and water (non-solvent), was coated onto 
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Fig. 6  SSDRC laminated fabrics. a Schematic of the bilayer fabrics and functions of different layers. b Schematic of a PTFE/TiO2-PLA meta-
material fabric with a bilayer structure for daytime radiative cooling. Reproduced with permission from [98].  Copyright 2021, AAAS. c Sche-
matic structures of the PMP/AgNW/wool tri-layer fabrics and the functions of different layers. d Experimental and theoretical results of the 
emissivity of top PMP nanofibers. Reproduced with permission from [25]. Copyright 2021, AAAS. e Schematic depicting the heat dissipation 
and sweat release process of WGID membrane. Reproduced with permission from [112]. Copyright 2024, Springer Nature
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the substrate and allowed to dry naturally in the air. Rapid 
evaporation of the volatile acetone led to phase separa-
tion of PVDF-HFP from water, resulting in the formation 
of a random porous PVDF-HFP membrane. The result-
ing PVDF-HFP porous membrane exhibited a high solar 
reflectivity of 96% and ATW emissivity of 97%, with an 
average cooling power of ~ 96 W  m−2 under solar intensity 
750 W  m−2, respectively. In addition, bioinspired materials 
that mimic biological structures for thermoregulation have 
shown promise for radiative cooling [117–122]. Many natu-
ral organisms [121], including silver ants [123], cocoons 
[117], golden longicorn beetles [124], lotus leaves [125], 
white beetles [126], and cicadas [127], exhibit remarkable 
photonic structures for thermal regulation. For instance, 
cicada, a thermophilic insect, has been observed to utilize 
brilliant golden microspikes with a nanophotonic porous 
heart-shaped structure for radiative cooling in summer [127]. 
Inspired by this efficient biological prototype, Fan et al. 
reported a bioinspired porous membrane based on porous 
thermoplastic polyurethane embedded with alumina (TPU/
Al2O3) nanoparticles. The TPU/Al2O3 porous membranes 
featured microscale pores and surface humps, emulating 
the key characteristics of the cicada microspikes. Moreover, 
TPU, which had numerous extinction peaks in the infrared 
ranges, including C-O (1732  cm−1), C-N (1533, 1311, and 
1223  cm−1), and C–O–C (1174 and 1074  cm−1), was utilized 
to enhance the MIR emission. The intentional embedding 
of  Al2O3 further increased extinction efficiency. The TPU/
Al2O3 membranes demonstrated a high solar reflectivity of 
97.6% and an average ATW emissivity of 95.5%. The TPU/
Al2O3 porous membranes exhibited a cooling power of 78 
W  m−2 and achieved a maximum sub-ambient cooling of 
6.6 °C at noon. Inspired by the hair structure of longicorn 
beetles, Zhu et al. developed a photonic film composed of 
periodically arranged micro-pyramidal polydimethylsilox-
ane (PDMS) embedded with randomly distributed aluminum 
oxide ceramic particles [124]. This unique pyramidal archi-
tecture significantly enhances solar reflectivity up to 95%, 
achieving a cooling power of 90.8 W  m−2. This research 
offers valuable bioinspired insights into the scalable produc-
tion of bionic photonic cooling materials.

An ordered porous membrane features a periodic arrange-
ment of pores, resembling a photonic crystal (Fig. 7b-i). 
The periodic structures can selectively reflect light within 
a specific wavelength range through Bragg diffraction. 
Despite their inefficiency in reflecting sunlight across a 

broad spectrum, they can effectively regulate absorption 
within the ATW range. By collaboratively designing ordered 
micropores and disordered nanopores structures, it is pos-
sible to achieve both high reflections of sunlight and high 
emissions in the ATW range. The ordered micropores and 
disordered nanopores structures can be fabricated by tem-
plate method, photolithography, and 3D printing [12–131]. 
Wu et al. prepared an inverse opal PMMA (IO-PMMA) 
membrane with ordered micropores and random nanopo-
res through a sacrificial template method (Fig. 7b-ii) [132]. 
PMMA exhibits multiple extinction peaks within the ATW 
waveband, endowing IO-PMMA membranes with spectrum-
selective emission. The periodic reentrant structures and 
hierarchical nano-/microscale pores helped improve scatter-
ing efficiency and increased infrared emission by allowing 
multiple diffuse reflections at different angles. With these 
combined attributes, IO-PMMA membranes achieved a high 
solar reflectivity of 95% and ATW emissivity of 98%, ena-
bling sub-ambient cooling of 5.5 °C under a solar irradiation 
of 930 W  m−2. The periodic arrangement of the hierarchical 
nano/microscale pores can maximize both the surface area 
and the number of scatters per unit and increase the overall 
scattering efficiency.

Gradient porous membranes exhibit a gradual change 
in pore diameter, and porosity along the thickness direc-
tion (Fig. 7c-i) [133–135]. The pore size of gradient porous 
membranes ranges from nanometer to micrometer. When 
incident light encounters the interface between air and the 
porous membranes, the gradient in micro-/nanopore sizes 
selectively interacts with the solar spectrum, including 
ultraviolet, visible, and near-infrared wavelengths. Hence, 
a gradient porous structure allows for precise control over 
the wavelength and direction of sunlight reflection. Mao 
et al. prepared a gradient structure porous metamaterials 
(GSPMs) using a cellulose acetate matrix through a step-by-
step freeze-casting technique (Fig. 7c-ii) [136]. The arrange-
ment of a gradient porous structure minimized the reflection 
of infrared photons, thereby enhancing the MIR emission 
due to the gradual change in refractive index. Three porous 
metamaterials, downward-GSPM (D-GSPM), upward-
GSPM (U-GSPM), and random porous material (RPM) 
exhibited different ATW emissivity values of 96.9%, 97.6%, 
and 90.3%, respectively. The electric field distribution was 
simulated to compare the MIR absorption/emission capabili-
ties of these three porous metamaterials at a representative 
wavelength of 10 μm. The spectrograms of the absorption 
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field revealed a stronger electric field absorption intensity for 
the GSPMs compared to the RPM, suggesting that the gra-
dient porous structures enhance the absorption capacity for 
incident light, thereby improving the MIR thermal emission.

3.3  Particle Coatings

The solar reflectivity of particle coatings can be effec-
tively regulated by optimizing the size and arrangement of 
particles, a principle that has been widely explored in the 
development of high-performance radiative cooling mate-
rials. Recent advancements have demonstrated the poten-
tial of various particle systems, including ceramic particles 
[12, 43, 137–140], ceramic/polymer particles [141, 142], 

Fig. 7  SSDRC porous membranes. a (i) Schematic structure of randomly porous membranes. (ii) Schematic diagram for fabricating a PVDF-
HFP random porous membrane by a phase-inversion method. Reproduced with permission from [36].  Copyright 2018, AAAS. b (i) Schematic 
structure of ordered porous membranes. (ii) Schematic diagram for fabricating inverse opal PMMA membranes with ordered micropores and 
random nanopores through self-assembly and template method. Reproduced with permission from [132]. Copyright 2021, Springer Nature. c 
(i) Schematic structure of gradient porous membranes. (ii) Schematic diagram for preparing cellulose acetate gradient porous membranes using 
directional freeze-drying method. Reproduced with permission from [136]. Copyright 2024, John Wiley and Sons
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and metal/polymer particles [143]. Among these, ceramic 
particles such as  TiO2 [137],  SiO2 [12],  Al2O3 [43], and 
ZnO [144] stand out due to their exceptional chemical 
stability and rich infrared-active vibrational modes (e.g., 
Si–O, Al–O, Zn–O). These vibrational modes, which occur 
within the atmospheric transmission window, enable spec-
trally selective radiative cooling, making ceramic particles 
a promising candidate for such applications.  Al2O3 parti-
cles, in particular, exhibit remarkable properties, including 
a high melting point (2072 °C), refractive index (1.7), and 
bandgap (7.2 eV), coupled with excellent thermodynamic 
and chemical stability. These attributes make them ideal 
for use as anti-sintering agents in cooling glass materials. 
For instance, Hu et al. developed a cooling glass through a 
straightforward two-step method [43]. In this process, inex-
pensive glass and  Al2O3 particles were mixed to prepare a 
slurry, which was then subjected to thermal annealing of 
glass to produce cooling coatings (Fig. 8a). This approach 
leveraged the infrared-active vibrational modes of glass par-
ticles within the ATW region, which acted as unconventional 
binders, forming a robust porous framework (~ 12 mm in 
size) that enhanced selective ATW emission through pho-
non-polariton resonance. The inclusion of  Al2O3 particles 
(mean size of 0.5 mm) further improved solar reflectance 
via Mie scattering. The resulting glass/Al2O3 compos-
ite coatings achieved a solar reflectance of > 96% and an 
ATW emissivity of ~ 95%, with no degradation in cooling 
performance even after 60 days of water immersion. This 
highlights the material’s exceptional moisture stability and 
potential for long-term outdoor applications. While micro- 
and nanoscale ceramic materials are widely used in SSDRC 
due to their durability, high hardness, and selective emit-
tance, their inherent lack of adhesion and low mechanical 
strength pose significant challenges for outdoor use. To 
address these limitations, researchers have increasingly 
focused on hybrid systems that combine ceramic particles 
with polymer matrices. These composites not only enhance 
cooling efficiency but also improve mechanical robustness 
and adhesion [145–147]. For example, Tso et al. developed 
a radiative cooling ceramic, composed of PES, N-methyl-
2-pyrrolidone (NMP), and  Al2O3 (Fig. 8b) [44]. The cooling 
ceramics featured a distinctive densely packed outer layer 
and numerous internal voids. They were prepared through 
a combination of phase inversion and sintering processes. 
During the phase inversion, a polymer-rich membrane was 
created, forming an anisotropic porous network. Subsequent 

high-temperature sintering facilitates the bonding of  Al2O3 
particles, resulting in a precisely preserved porous structure. 
The resulting porous  Al2O3 network exhibited a near-perfect 
solar reflectivity of 99.6% and a high ATW emissivity of 
97%, attributed to the vibrational modes of Al-O chemical 
bonds (9.5–12.1 µm). This material demonstrated consistent 
sub-ambient cooling outdoors, with a cooling power exceed-
ing 130 W  m−2 at noon, showcasing its potential for practical 
applications. In addition to ceramic-based materials, metal-
lic components have also been explored for their high solar 
reflectance. For instance, Chen et al. developed silver-coated 
colloidal photonic crystal (Ag/CPC) metamaterial coatings, 
which exhibited highly selective reflection of solar radiation 
(Fig. 8c) [148]. The Ag/CPC coatings achieved an average 
solar reflectivity of 73% and an ATW emissivity of 91%, 
with a theoretical cooling power of 30.4 W  m−2. Notably, 
these coatings could be applied to architectural walls, offer-
ing a vibrant blue color that expands their potential use in 
aesthetically appealing radiative cooling paints.

Multilayer structures have been engineered into radiative 
coolers via periodic stacks of particle-coating layers [53, 
149]. A multilayer radiative cooler typically comprises ver-
tically stacked particle coatings designed to suppress solar 
absorption while enhancing infrared emission. This archi-
tecture functions as a 1D photonic crystal, where alternat-
ing layers of materials with distinct refractive indices and 
thicknesses are arranged periodically [86]. The multilayer 
strategy exploits photonic bandgap effects to precisely tailor 
electromagnetic responses. By optimizing material com-
binations and layer thicknesses, these structures achieve 
targeted reflection spectra with high solar reflectivity. For 
instance, Fan et al. demonstrated a multilayer photonic 
reflector exhibiting 97% solar reflectivity, comprising seven 
alternating  HfO2/SiO2 layers with sub-100 nm thicknesses 
deposited on a 200 nm silver-coated silicon substrate [7]. 
In this design,  HfO2 acts as a high-refractive-index layer 
with minimal ultraviolet absorption, whereas  SiO2 serves 
as a low-index, optically transparent layer. Moreover,  SiO2 
and  HfO2 exhibited selective emission in the 8–13 µm 
wavelength range. The  HfO2/SiO2 photonic reflector dem-
onstrated high solar reflectance and spectrum-selective 
emission. The dimensional optimization of such multilayer 
systems involves intricate adjustments of layer count, mate-
rial selection, and individual thicknesses. Machine learn-
ing has emerged as a powerful tool for this purpose. Rho 
et al. employed genetic algorithms to optimize multilayer 
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emitters for daytime passive radiative cooling [53]. The 
optimization approach is expected to increase additional 
degrees of freedom. Among the four material candidates 
of  SiO2, silicon nitride  (Si3N4), magnesium fluoride  (MgF2) 
and  HfO2, proper materials were recommended, and thick-
nesses were optimized for desired optical functionalities. 
Machine learning algorithms have also demonstrated use-
fulness in the design of multilayer radiative cooling mate-
rials. Table 3 summarizes some of the reported SSDRC 
materials, detailing their preparation techniques, optical 

characteristics, and cooling performances. Collectively, 
these advancements highlight the importance of material 
selection and structural design in optimizing radiative cool-
ing performance. However, challenges such as durability, 
aesthetics, and tunability of SSDRC materials remain criti-
cal areas for future research. By addressing these issues, 
the field can move closer to the widespread adoption of 
radiative cooling technologies in real-world applications.

Fig. 8  SSDRC particle coatings. a Ceramic particles. (i) Schematic diagram of the glass/Al2O3 cooling particles. (ii) Reflectance/emissivity 
spectra of glass/Al2O3 particles in the solar and MIR ranges. Reproduced with permission from [43].  Copyright 2023, AAAS. b Ceramic/
polymer hybrid particles. (i) Photograph and (ii) SEM images of a polymer/Al2O3 cooling ceramic particles. (iii) Volume concentration of pores 
within the cooling ceramics. Reproduced with permission from [44]. Copyright 2023, AAAS. c Metal/polymer particles. (i) Schematic diagram 
of Ag-coated colloidal crystals for building cooling. (ii) Demonstration of large-scale preparation of Ag-coated colloidal crystals. Reproduced 
with permission from [148]. Copyright 2024, John Wiley and Sons
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4  Applications of SSDRC

The multifunctionality of SSDRC materials significantly 
expands their application scenarios. In this section, we 
examine the recent advancements in SSDRC materials, 
with a specific focus on their applications in personal ther-
mal management, outdoor building cooling and energy 
harvesting.

4.1  Personal Thermal Management

In recent years, we have seen advancements in personal 
thermal management (PTM), focusing on regulating heat 
transfer in our immediate surroundings, clothing, and skin 
[149–157]. SSRDC materials have been incorporated into 
cooling textiles for PTM applications. Key considerations 
for SSRDC fabrics in PTM include cooling performance 
during hot midday conditions, wearing comfort, and color 
aesthetics [158, 159]. Tao et al. reported a multilayer meta-
material fabric [98]. As shown in Fig. 9a, a volunteer wear-
ing a metamaterial fabric vest reclined under direct sunlight 
for an hour, and the thermal properties of the vest and the 
volunteer were monitored in real time. The use of metama-
terial fabric vests resulted in a noticeable reduction in body 
temperature by approximately 4 °C compared to wearing a 
common cotton vest. During the half-hour test, the surface 
of the metamaterial fabric vest gradually exhibited a nota-
ble temperature difference, demonstrating long-term cool-
ing stability. Furthermore, the tunability of visible color is 
another critical factor that enhances the marketability of 
SSDRC textiles [159–165]. Cui et al. reported a strategy 
that employed inorganic nanoparticles as a coloring com-
ponent for producing brightly colored, infrared-transparent 
textiles (Fig. 9b) [166]. The as-fabricated textiles not only 
showed a high infrared transparency of ~ 80% and a pas-
sive cooling effect of 1.6–1.8 °C but also exhibited intense 
visible colors with good washing stability. However, these 
infrared-transparent colored textiles demonstrated efficacy 
in indoor passive cooling but were not suited for outdoor 
radiative cooling applications. Rho et  al. introduced a 
colored daytime radiative cooler that achieved high near-
infrared reflectance and high atmospheric window emis-
sivity, while enabling the generation of subtractive primary 
colors through Fabry–Pérot interference in metal–insulator-
metal structures. This innovative design offers a promising 

solution for applications requiring both effective radiative 
cooling and aesthetic color customization [167]. Our group 
fabricated radiative cooling nanofabrics comprising  SiO2 
nanofiber films and expanded polytetrafluoroethylene films 
(Fig. 9c) [93]. The nanofabrics featured hierarchical struc-
tures, exhibiting high solar reflectivity (94%) and high ATW 
emissivity (94%). To assess the practical cooling effective-
ness of nanofabrics, a custom-made vest incorporating com-
mercial cooling fabrics (Coolmax fabrics, cotton fabrics) 
and nanofabrics was crafted. A volunteer wore the vest in 
direct sunlight for 30 min, and an IR imager monitored the 
temperature distribution of the vest. The temperature curves 
measured for nanofabrics, cotton fabrics, and Coolmax indi-
cate the surface temperature of all three samples stabilized 
after 5 min. The results illustrated that nanofabrics have 
the capability of inducing a cooling sensation. Therefore, a 
feasible method is to combine infrared-transparent colored 
textiles [168] with radiative cooling nanofabrics, thereby 
achieving synergy between outdoor radiative cooling and 
color aesthetics. Moreover, the wearability performance of 
SSDRC fabrics should be taken into consideration for practi-
cal applications. Figure 9d shows the permeability and anti-
fouling performances of polyoxymethylene (POM) nanofib-
ers [41]. The air permeability of POM nanofibers reached 
34  cm3  s−1  cm−2, outperforming PE and PVDF membranes. 
In addition, the POM nanofibers showed high water vapor 
transmission rate (WVTR) (0.011 g  cm−2  h−1), which was 
similar to commercial cotton (~ 0.012 g  cm−2  h−1). The anti-
humidity properties, crucial for maintaining textile dryness 
and cleanliness in humid conditions, were also evaluated. 
The water contact angle of POM nanofibers was measured at 
138° and remained at 122° after 30 min, significantly higher 
than other textiles, indicating their superior waterproofing 
and anti-humidity performance. However, the hygrosco-
picity and moisture breathability of non-woven materials 
remain challenging compared to traditional fabrics, making 
them unsuitable for long-term wear. These issues can be 
solved by incorporating softeners to enhance the flexibility 
of non-woven fabrics and improving their hygroscopicity 
through chemical modifications.

The urban heat island effect has become a significant envi-
ronmental challenge, particularly in its impact on human 
thermoregulation and its synergistic interaction with global 
warming. This phenomenon is primarily driven by the differ-
ential thermal properties between urban structures and natu-
ral landscapes [169]. Specifically, anthropogenic surfaces, 
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including buildings and paved areas, exhibit higher solar 
radiation absorption coefficients and thermal emissivity 

compared to vegetative cover and aquatic systems. This 
results in elevated surface temperatures that frequently 

Fig. 9  Personal thermal management by radiative cooling. a Woven fabrics that exhibit daytime radiative cooling under solar irradiation at 
noon. Reproduced with permission from [98].  Copyright 2021, AAAS. b Fabrication of colored radiative cooling textiles through inorganic pig-
ment. Reproduced with permission from [166]. Copyright 2019, Elsevier. c Large-area non-woven fabrics that exhibit daytime radiative cooling 
under direct solar irradiation at noon. Reproduced with permission from [93]. Copyright 2024, Elsevier. d Comparison of the wearability of the 
polyformaldehyde nanofibers, commercial cotton, emission-type PVDF membranes, and transmission-type PE textiles, including air permeabil-
ity, water vapor transmission, and water contact angle tests. Reproduced with permission from [41]. Copyright 2023, Springer Nature
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exceed human skin temperature, creating a thermal gradient 
that promotes heat transfer to the human body. Broadband 
emissive textiles often experience performance degrada-
tion due to parasitic thermal radiation from surrounding 
urban elements. In contrast, SSRDC textiles have demon-
strated exceptional capability in mitigating these thermal 
loads by effectively suppressing non-ATW parasitic heat 
from the surrounding ground or buildings [25]. The evo-
lution of SSRDC technology is progressing toward adap-
tive thermal management systems, incorporating dynamic 
thermal regulation mechanisms and wearable electronic 
integration. Dynamic thermal-regulating textiles can utilize 
various modes of thermal regulation to adapt to changes in 
environmental temperature. For instance, these textiles can 
autonomously cool the human body during the summer and 
provide warmth in the winter. Thermochromic and electro-
chromic materials have been used in smart dynamic thermal 
regulation [169–172]. Additionally, SSDRC textiles can be 
integrated with flexible electronics, including wearable bat-
teries, moisture sensors, and temperature sensors, to enhance 
comprehensive healthcare applications [49, 150, 172–176]. 
Future efforts are expected to integrate various desired func-
tions, such as smart thermal management, self-powering, 
sensing, and computing into clothing.

4.2  Outdoor Building Cooling

As global warming and escalating energy consumption con-
tribute to rising global temperatures, the need to cool living 
environments has become increasingly urgent. In this con-
text, SSDRC ceramic particles, such as  Al2O3,  SiO2,  TiO2, 
and their composites, have emerged as promising candidates 
for the development of radiative cooling paints. These mate-
rials hold significant potential for large-scale application on 
buildings, offering a pathway to reduce electricity consump-
tion for cooling and mitigate the urban heat island effect 
(Fig. 10a) [44, 176–180]. Tso et al. reported cellular ceramic 
materials composed of  Al2O3/PES/NMP particle coatings 
[44]. Their study not only demonstrated the material’s cool-
ing performance but also explored its practical application 
in real-world building scenarios. For example, two identical 
model houses were constructed, one roofed with  Al2O3/PES/
NMP ceramic and the other with commercial tiles (Fig. 10b). 
Over a four-day test, the ceramic-coated roof maintained a 
temperature 5 °C lower than the tiled roof, highlighting its 

effectiveness in reducing heat absorption (Fig. 10c). This 
finding underscores the potential of SSDRC ceramics to 
significantly improve thermal comfort in buildings, particu-
larly in regions with high cooling demands. To quantify the 
energy-saving potential of the engineered cooling ceramic, 
researchers conducted additional assessments by operating 
air-conditioning units in the model houses in the summer. 
The air conditioning electricity usage over three periods, 
with set temperatures of 25, 23, and 20 °C was monitored 
in real time (Fig. 10d). These findings not only validate the 
material’s cooling efficiency but also suggest its potential to 
contribute to global energy conservation efforts. The  Al2O3/
PES/NMP ceramic model house consumed less electricity, 
with energy savings of 26.8%, 22.6%, and 19.6%, respec-
tively. Researchers also simulated energy consumption in 
full-scale buildings to evaluate the global energy-saving 
potential of  Al2O3/PES/NMP ceramic walls and roofs. In 
particular, annual energy savings from indoor air condi-
tioning exceeded 10%, amounting to 25 GJ per year, in the 
extremely hot regions of South America, North Africa, and 
South Asia (Fig. 10e). SSDRC architectural coatings can 
significantly reduce the external surface temperatures of 
buildings, thereby reducing substantial electricity consump-
tion generated by air conditioning. Additionally, radiative 
cooling particles often suffer from material mismatch when 
applied to building surfaces, especially on cement-based 
materials like concrete [181]. This mismatch can cause 
interfacial detachment, limiting their practical use in pas-
sive building cooling. To address this, Cui et al. proposed 
a particle-solid transition architecture [182]. They achieved 
this by welding  BaSO4 nanoparticles onto a cement-based 
solid substrate. In this design,  BaSO4 nanoparticles are par-
tially exposed, enabling radiative cooling, rather than being 
fully embedded in the matrix. This approach avoids the 
screening effect typically caused by cementitious substrates 
in uniform composites. At the same time, the solid sub-
strate shares material properties with cement-based build-
ing surfaces, eliminating the interface mismatch common in 
traditional radiative cooling coatings, membranes, or bulk 
materials. This design combines effective radiative cooling 
with enhanced compatibility for building applications. In 
addition, the transformation of waste plastics into build-
ing cooling materials with radiative cooling properties has 
also garnered significant attention. Zhang et al. [183] pro-
posed quickly converting abundant waste polystyrene foam 
into cooling coating via a closed-loop solvent extraction 
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strategy to satisfy the scale and clean production require-
ments of building a cooling envelope. Results demonstrate 
the coating has a randomly porous structure thus reflect-
ing 97% solar radiation and emitting 94% thermal radia-
tion. About 8 °C of net and 7.5 °C/1000  cm3 building space 

cooling capacity can be achieved even under 1500 W  m−2  
of solar radiation. This work will effectively inspire the 
development of large-scale and low-environmental-impact 
building cooling envelopes. Recently, there have still many 
challenges in practical applications, one of which is the 

Fig. 10  Outdoor building cooling. a Schematic of the building cooling of SSDRC paints through solar reflection and selective MIR emission. b 
Photographs of two model houses, with the white cooling ceramic and white commercial tile applied on the roof (area: ~ 1.15  m2). c Differences 
in the roof and indoor air temperatures for the two model houses. d Electricity usage of the two houses with air-conditioning set points of 25 °C, 
23 °C, and 20 °C. e Energy-saving performance on a worldwide scale considering the energy consumed by cooling systems, fans, and heating 
equipment. Reproduced with permission from [44].  Copyright 2023, AAAS
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durability issue of SSDRC architectural cooling coatings. 
These coatings experience prolonged exposure to outdoor 
conditions, such as rain, acidic and alkaline environments, 
and ultraviolet radiation, all of which can considerably 
impact their stability. Secondly, in practical applications, 
SSDRC architectural cooling coatings are expected to pro-
vide cooling/warming selectivity, effectively radiating heat 
in hot weather and offering insulation in cold weather. In the 
quest for sustainable architecture, smart building coatings 
that can dynamically regulate cooling and warming have 
emerged as highly desired innovations.

4.3  Energy Harvesting

Recent advancements in radiative cooling have demonstrated 
its potential for integration with various sustainable energy-
harvesting technologies, such as thermoelectric harvesting 
[174, 183–189], moisture-electricity harvesting [51] and tri-
boelectric energy harvesting [190]. These integrations not 
only enhance the functionality of radiative cooling materials 
but also open new avenues for energy generation and sus-
tainability. For instance, Yan et al. developed a thermocell 
device by integrating thermogalvanic ionogel (THG-ionogel) 
with DRC materials [45]. The device consisted of a radiative 
cooling layer (DRCL), a THG-ionogel, and a black encapsu-
lation layer (BEL) that functioned as a radiative heating layer 
(Fig. 11a). The generation of thermoelectricity under diverse 
weather conditions was investigated through real-time test-
ing conducted outdoors. As shown in Fig. 11a-ii, on a sunny 
day, the DRCL of the thermocell demonstrated an average 
sub-ambient, ΔT of 8.3 °C, generating an average voltage 
of 0.61 V. While on a cloudy day (Fig. 11a-iii), with fog and 
haze limiting radiative heat transfer into the atmosphere, 
the average ΔT decreased to 1.5 °C and the corresponding 
output voltage reached 0.28 V. These results highlight the 
adaptability of thermocell devices to varying environmental 
conditions. The integration of radiative cooling with flexible 
thermoelectric systems represents another promising direc-
tion, particularly for applications in wearable technology. 
Hence, our group present a facile approach involving the 
screen printing of large-scale carbon nanotube (CNT)-based 
thermoelectric arrays on conventional textile. The operating 
mechanism of radiation-modulated thermoelectric textiles 
is illustrated in Fig. 11b-i. CNT arrays acted as both pho-
tothermal and thermoelectric devices, while PVDF-HFP 

membranes served as radiative cooler that reflect sunlight 
and dissipate heat. The controlled coverage ratio of the 
PVDF-HFP SSDRC membranes on the CNT-based thermo-
electric arrays allows precise adjustment of the temperature 
gradient across the thermoelectric array, enhancing energy 
convention performance from thermal to electrical energy. 
Four pieces of radiation-modulated thermoelectric fabrics 
were assembled on clothing to explore its thermoelectric 
performance. Typically, the output voltage could reach 
115.2, 184.5, 100.6, and 2.9 mV at four different times on a 
clear day, respectively (Fig. 11b-ii). In addition, a strategy 
of combining radiative cooling with moisture energy har-
vesting was reported by Zhao’s group [191]. As shown in 
Fig. 11c, the moisture energy-harvesting device was char-
acterized by a bilayer polymer, composed of a hydrophobic 
porous PVDF-HFP layer and a hygroscopic ionic hydrogel 
(IH) layer (PP/IH). The PP/IH laminated hydrogel enabled 
moisture-electricity generation from the hydrological cycle 
through the process of water/ion flow, which was driven by 
thermal exchange with the ambient environment. The asym-
metric hygroscopic structure of the PP/IH laminated hydro-
gel contributed to the establishment of internal gradients in 
water content and ion concentration, which in turn generated 
continuous water/ion flow. This continuous flow of ions led 
to stable electricity generation. During the day, the PVDF-
HFP layer blocked the absorption of sunlight, thereby reduc-
ing the evaporation of moisture within the PP/IH laminated 
hydrogel. This prevented the water/ionic concentration gra-
dient within the PP/IH laminated hydrogel from decreasing 
due to daytime moisture evaporation. At night, the hygro-
scopic ionic hydrogel absorbs moisture from the environ-
ment. The heat generated by the moisture absorption of ionic 
hydrogel was dissipated into the environment through night-
time radiative cooling of the top PVDF-HFP layer, thereby 
maintaining a balance of ion concentration gradient. Conse-
quently, the PP/IH laminated hydrogel maintained a stable 
ion concentration gradient both during the day and at night, 
thus ensuring a stable voltage output. This dual-day-and-
night operation allowed the PP/IH laminated hydrogel to 
achieve continuous energy output for six days in outdoor 
experiments. The primary advantage of radiative cooling 
in thermoelectric energy harvesting is its ability to create 
a stable temperature difference through radiative cooling, 
thereby facilitating continuous thermoelectric conversion. 
In moisture energy harvesting, the incorporation of ionic 
hydrogel materials enhances energy generation efficiency 
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Fig. 11  Radiative cooling enhanced energy harvesting. Thermoelectric energy harvesting. a Ionic thermoelectric gel. (i) Schematic of enhanced 
thermoelectricity by daytime radiative cooling. Detailed solar intensity and temperature data of the two sides of the thermogalvanic ionogel and 
the voltage change on (ii) sunny and (iii) cloudy days. Reproduced with permission from [45].  Copyright 2024, John Wiley and Sons. b Large-
area radiation-modulated thermoelectric fabrics. (i) Principle and the structures of radiation-modulated thermoelectric fabrics. (ii) Output volt-
age generation performance of self-powered wearable textile under four different weather conditions. Inset, schematic diagram of applications in 
self-powered wearable textile. Reproduced with permission from [52]. Copyright 2025, AAAS. Moisture energy harvesting. c Radiative cooling 
induced cycle evaporation and power generation. (i) Schematic diagram illustrating the structure of the laminated ionic hydrogel. The opera-
tional mode of the laminated ionic hydrogel in the diurnal cycle. (ii) Continuous moisture energy-harvesting test results for 6 days outdoors. 
Reproduced with permission from [191]. Copyright 2024, Springer Nature
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by preserving water content and ion concentration gradient 
within the ionic hydrogel.

5  Conclusions and Perspective

In recent years, daytime radiative cooling has emerged as 
a significant area of interest within thermal management 
research, exhibiting its potential for a wide range of appli-
cations, involving personal thermal management, building 
cooling, and energy harvesting. Daytime radiative cooling 
materials are designed to achieve high solar reflectivity, 
minimizing heat absorption from sunlight. They also exhibit 
strong mid-infrared emissivity, particularly within the ATW 
region, to efficiently radiate heat into the cooler atmosphere. 
These materials are often designed to emit broadly across 
the entire MIR spectrum, but this broad-spectrum emissivity 
inadvertently leads to unintended absorption of thermal radi-
ation in the non-ATW wavelength band, which can signifi-
cantly limit the cooling performance. SSDRC materials are 
tailored to emit primarily within the ATW while suppressing 
emission/absorption in the non-ATW range, having superior 
cooling efficiency. In this paper, we review the advance-
ments in SSDRC materials, encompassing their fundamental 
properties, structural characteristics, fabrication processes, 
and diverse applications.

Despite significant achievements in SSDRC materials, 
challenges that affect their performance and implementa-
tion toward practical applications still exist. To facilitate the 
development of SSDRC materials, we have outlined the gen-
eral challenges and prospects (Fig. 12). The first challenge is 
the durability of SSDRC materials, specifically their optical 
and mechanical properties. Often exposed to outdoor envi-
ronments, these materials are frequently subjected to vari-
ous harsh environmental factors, including moisture, ultra-
violet, and chemical degradation. To expand their lifespan, 
it is crucial to enhance their durability through improved 
hydrophobic properties, ultraviolet reflectivity, mechanical 
strength, and corrosion resistance. Recent advancements in 
micro-/nanomanufacturing technologies and interdiscipli-
nary research have yielded promising strategies for dura-
bility enhancement [29]: (1) Utilization of environmentally 
stable ceramic raw materials [100, 108]; (2) Implementa-
tion of chemical modification technologies [181, 192, 193]; 
and (3) Development of hybrid material systems [124]. 
For example, Wan et al. fabricated superhydrophobic silica 

fibrous films through electrospinning and calcination [100]. 
The silica fibrous film not only demonstrated sub-ambient 
cooling performance of 6 °C, but also exhibited self-clean-
ing, anti-mildew, and anti-acid abilities. Zhu et al. prepared 
potassium titanate  (K2Ti6O13) doped porous PEO fiber film 
through electrospinning. This innovative approach signifi-
cantly improved UV resistance by enabling the  K2Ti6O13 
nanofibers to absorb high-energy UV photons [194].

Secondly, current traditional SSDRC materials are pre-
dominantly white to achieve high solar reflectance. It is chal-
lenging to satisfy aesthetic preferences in real-life applica-
tions [17]. The color of an SSDRC material, when exposed 
to sunlight, is typically determined by its absorption of visi-
ble-spectrum wavelengths. However, the challenges arise as 
visible-light absorption tends to heat the SSDRC material, 
making it difficult to maintain a specific color for aesthetic 
purposes while preserving effective radiative cooling. A 
promising solution that relies on diffuse scattering rather 
than absorption to create a color appearance while maintain-
ing high sunlight reflectance, has been proposed. For exam-
ple, Wang et al. proposed a cooling structure design con-
sisting of a  TiO2/SiO2 multilayer, a frosted glass disordered 
layer, and a reflective silver mirror [195]. The  TiO2/SiO2 
multilayer efficiently reflects undesired light while allowing 
high transmittance for the desired light. For example, a blue 
sample transmits blue light while strongly reflecting other 
visible lights. The frosted glass and silver mirror diffusely 
reflect the transmitted light, which then passes back through 
the multilayer, leading to a highly saturated color appear-
ance. This structural design maximizes daytime radiative 
cooling performance while achieving specific visible-light 
colors. Based on structural classification, colored SSDRC 
materials can be categorized into two primary types: pho-
tonic crystal-based and pigment nanoparticle-based systems 
[196]. Photonic crystals, as a class of optical metamaterials, 
offer a versatile platform for precisely engineering spectral 
properties in radiative cooling applications. Representa-
tive examples include Ag-SiO2-TiO2 [160], Ag-SiO2-Si3N4 
[197], and Si-SiO2-TiO2 [198] multilayer photonic crystals, 
which have been successfully implemented in colored day-
time radiative cooling. In contrast, nanoparticle-based struc-
tures demonstrate superior processability, where pigment 
nanoparticles act as randomly distributed optical resonators 
when embedded in polymer matrices. Commonly employed 
nanoparticles, such as  SiO2 [199],  TiO2 [200], ZnO, and 
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 BaSO4, have been effectively integrated to fabricate colored 
SSDRC materials.

Moreover, fluctuating weather conditions are another 
factor that restricts SSDRC applications, as their cooling 
power is highly susceptible to weather conditions. Combin-
ing SSDRC with other technologies such as evaporative 
cooling using hydrogels or hygroscopic salts, serves as a 
promising strategy for tunability of SSDRC materials. Pas-
sive water-based evaporative cooling, which uses water as 
a refrigerant, is gaining significant attention [201]. This 
cooling method can be implemented through three main 
approaches: direct evaporative cooling (DEC) [202], cyclic 
sorption-driven liquid water evaporative cooling (CSD-
LWEC) [203], and atmospheric water harvesting-based 
evaporative cooling (AWH-EC) [204]. DEC is less favored 

due to its high consumption of liquid water. In contrast, 
CSD-LWEC and AWH-EC offer more sustainable alterna-
tives by either recycling the generated vapor or extracting 
vapor from the ambient air using regenerable water vapor 
sorbents, such as high-hygroscopicity hydrogels (polyacryla-
mide [205], sodium polyacrylate [206]) or hygroscopic salts 
 (Ca2+ [207],  Li+ [208], quaternary ammonium salts [203]). 
These methods enable evaporative cooling without the need 
for liquid water consumption. The material design of the 
absorbent material plays a crucial role in the effectiveness of 
both CSD-LWEC and AWH-EC systems. Chen et al. devel-
oped a lithium bromine-enriched polyacrylamide hydrogel 
for semiconductor cooling [205], in which LiBr worked as 
the sorbent for atmospheric water capture and polyacryla-
mide hydrogel provided a solid platform that constrained 

Fig. 12  Challenges and prospects of SSDRC materials: exploring high-durability SSDRC materials, fabricating colored SSDRC materials, 
developing dynamic radiative management, and novel applications
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the solution in a desired region. The hydrogel could reduce 
the cell phone chip temperature by 15 °C under the heat flux 
of 2229 W  m−2. An innovative solution for achieving tun-
able SSDRC materials lies in the development of infrared 
adaptive materials. These materials can precisely regulate 
their infrared optical characteristics in response to seasonal 
changes and regional climate conditions [209, 210]. For this 
purpose, various infrared adaptive material systems have 
been investigated and adapted in radiative cooling, such as 
graphene [211], electrochromic materials [212], metamate-
rials [213], ferroelectric materials [214], and phase-change 
materials (vanadium dioxide [215], liquid crystal materials 
[216]). For instance, Feng et al. demonstrated a bacterial 
cellulose-templated radiative cooling liquid crystal mem-
brane [216]. This membrane not only rapidly responds to 
changes in ambient temperature and adaptively modulates its 
solar transmittance (from 300 to 2500 nm) but also strongly 
scatters solar radiation in its opaque state. Owing to the 
combination of high ATW emissivity of cellulose and adap-
tive solar transmittance modulation of liquid crystal, this 
bacterial cellulose-templated radiative cooling liquid crys-
tal membrane holds great potential for thermal regulation 
applications in smart windows for vehicles and buildings. 
In contrast to conventional static radiative coolers, infrared 
adaptive materials exhibit dynamic optical performance, 
offering the potential for tunable radiative regulation.

Finally, the significant challenge for SSDRC materials 
lies in achieving scalable manufacturing and widespread 
implementation while maintaining optimal performance 
characteristics. This critical hurdle encompasses not only 
the technical aspects of large-scale production but also the 
practical considerations of cost-effectiveness, material avail-
ability, and integration with existing infrastructure systems. 
The successful transition from laboratory-scale prototypes to 
commercially viable, mass-producible solutions represents a 
pivotal step in realizing the full potential of SSDRC technol-
ogies for global applications. Tao et al. developed large-scale 
woven metafabrics [98]. These metafabrics are cost-effec-
tive and easy to produce, making them suitable for smart 
textiles and passive radiative cooling. Their compatibility 
with existing textile manufacturing processes supports wide-
spread use. SSDRC materials can be widely applied in urban 
infrastructure. A representative example is the white coating 
created by Hu’s team [43]. They mixed micrometer-sized 
 Al2O3 particles with glass particles in a solvent. This coating 

can be painted onto different surfaces using simple brushes, 
enabling large-scale applications. It works for both personal 
cooling and building cooling, meeting energy-saving needs 
in daily life and cities. The development of SSDRC mate-
rials represents a transformative step toward addressing 
global cooling challenges. Innovations such as the metafab-
rics for wearable applications and the  Al2O3-based coating 
for architectural cooling demonstrate the potential of these 
materials to revolutionize both personal and urban thermal 
management. As research progresses, the focus on scalabil-
ity, cost-effectiveness, and ease of application will be criti-
cal to ensuring the widespread adoption of these technolo-
gies. By leveraging these advancements, SSDRC materials 
can play a pivotal role in creating a more sustainable and 
energy-efficient future, ultimately contributing to a cleaner 
and cooler planet.
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