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HIGHLIGHTS 

• The underlying mechanism governing the modulation of carrier transport by piezoelectric potential is elucidated through finite ele-
ment simulations and experimental validation.

• The bimodal piezotronic sensor (BPS) exhibits exceptional responsiveness to both static and dynamic stimuli, achieving an ultrahigh 
gauge factor of up to 23,439.

• The BPS demonstrates robust capability for bimodal monitoring and hazard warning of Achilles tendon behavior, achieving an accu-
racy of 96%.

ABSTRACT  Bimodal pressure 
sensors capable of simultaneously 
detecting static and dynamic forces 
are essential to medical detection and 
bio-robotics. However, conventional 
pressure sensors typically integrate 
multiple operating mechanisms to 
achieve bimodal detection, leading 
to complex device architectures and 
challenges in signal decoupling. In 
this work, we address these limita-
tions by leveraging the unique piezo-
tronic effect of Y-ion-doped ZnO to develop a bimodal piezotronic sensor (BPS) with a simplified structure and enhanced sensitivity. Through 
a combination of finite element simulations and experimental validation, we demonstrate that the BPS can effectively monitor both dynamic 
and static forces, achieving an on/off ratio of 1029, a gauge factor of 23,439 and a static force response duration of up to 600 s, significantly 
outperforming the performance of conventional piezoelectric sensors. As a proof-of-concept, the BPS demonstrates the continuous monitoring 
of Achilles tendon behavior under mixed dynamic and static loading conditions. Aided by deep learning algorithms, the system achieves 96% 
accuracy in identifying Achilles tendon movement patterns, thus enabling warnings for dangerous movements. This work provides a viable 
strategy for bimodal force monitoring, highlighting its potential in wearable electronics.
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1 Introduction

Understanding complex external forces has promoted sig-
nificant advancements in stress sensors [1–3], enabling 
their crucial applications in cutting-edge areas, such as 
human–computer interaction, electronic skin, bio-robot-
ics, and health monitoring [4–7]. Notably, many scenarios 
require the simultaneous monitoring of dynamic and static 
stresses, placing stringent and urgent requirements on the 
performance of stress sensors [8–13]. In recent years, 
efforts to develop bimodal sensors capable of detecting 
both dynamic and static stresses have mainly focused on 
compounding multiple functional layers to capture sig-
nals separately [14–16]. According to different working 
principles, conventional bimodal sensors can be primarily 
categorized into piezoresistive–piezoelectric, piezoresis-
tive–triboelectric, and piezoelectric–triboelectric con-
figurations [17–20]. However, these devices often suffer 
from complex structures, severe signal crosstalk, and high 
manufacturing costs. Therefore, achieving bimodal sens-
ing within a single material has emerged as a key focus of 
current research [21–23].

Piezotronic sensors, which leverage the unique piezo-
tronic effect, have received widespread attention due to 
their brand-new regulation mechanism [24–26]. By cou-
pling piezoelectricity with semiconductor properties, pie-
zotronic sensors could exponentially modulate the carrier 
transport by strain-induced piezoelectric potential at the 
interface between the piezoelectric material and the metal 
electrode. This mechanism enables the direct correlation 
between mechanical stimuli and changes in electrical out-
put, resulting in excellent sensitivity to mechanical inputs 
[27–29]. Various materials, including ZnO,  MoS2, and 
GaN, have been explored for piezotronic sensors [30–32]. 
A landmark achievement was the development of the 
first piezotronic sensor based on a transverse single ZnO 
nanowire [33], which utilized piezoelectrically polarized 
charges at the interface of two back-to-back Schottky con-
tacts to modulate electrical transport properties, achieving 
a gauge factor of up to 1250. More recently, a piezoelectric 
tunnel junction strain sensor based on  HfO2 and n-ZnO 
demonstrates remarkable performance with a gauge fac-
tor as high as 4.8 ×  105 and an on/off ratio of 478 at 0.10% 
strain [25]. Furthermore, Li ions-doped ZnO piezotronic 
sensor array enables large-scale integration and in-plane 

strain detection, demonstrating a broad application pros-
pect [34]. As can be seen, ZnO has aroused intensive atten-
tion as a material of choice for piezotronic sensors, due to 
its rich properties, low cost, and ease of large-scale inte-
gration [35–37]. Despite these milestones, current research 
has predominantly focused on enhancing sensitivity and 
on/off ratios, while little attention has been paid to their 
possible bimodal response capabilities [38–40].

In this work, we present a bimodal piezotronic sensor 
(BPS) based on rare-earth (Y)-ion-doped ZnO and dem-
onstrate its unique application in monitoring Achilles 
tendon behavior. Distinguished from the reported works, 
the BPS not only achieves high sensitivity but also exhib-
its good dynamic and static force detection capabilities, 
greatly enhancing the stability of practical implementa-
tion. Meanwhile, experimental investigations and finite 
element simulations are combined to probe the modulation 
mechanism of the effect of piezoelectricity on the perfor-
mance of piezotronic sensors. As a proof-of-concept, the 
developed BPS demonstrates the accurate identification 
of different Achilles tendon states. The bimodal sensor 
construction scheme proposed in this work provides a new 
idea for bimodal detection and demonstrates broad appli-
cation prospects in flexible artificial intelligence.

2  Experimental Section

2.1  Fabrication of BPS

The undoped and Y-doped ZnO nanorod films were syn-
thesized via a low-temperature hydrothermal process. 
First, conductive glass (20 mm × 20 mm) underwent a 
thorough cleaning procedure involving sequential ultra-
sonication in acetone, ethanol, and deionized water, fol-
lowed by nitrogen gas drying. Then, a seed layer of ZnO 
was deposited on the cleaned substrates using RF mag-
netron sputtering for 2 h. The flow rate of argon and oxy-
gen was 40:1, and the sputtering power was 60 W. The 
hydrothermal growth solution was prepared by dissolv-
ing 0.1 M Zn(NO3)2⋅6H2O, 0.1 M  C6H12N4 and 0.01 M 
Y(NO3)3⋅6H2O in a blue-necked bottle. The seeded sub-
strates were then immersed in the growth solution and 
placed in an oven at 85° for 6 h. Subsequently, a polym-
ethyl methacrylate (PMMA) barrier layer was uniformly 
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coated on the surface of the ZnO films. The spin-coating 
speeds were 500 r  min−1 for 10 s and 3000 r  min−1 for 30 s, 
and baked at 80 °C for 1 h. For electrical characterization, 
a planar electrode structure was fabricated by depositing 
Ag electrodes (4 mm × 5 mm) through RF magnetron sput-
tering. The electrodes were drawn through copper wires 
and reinforced with silver paste. Finally, the completed 
device was encapsulated with commercial PU film to pro-
tect the structure during subsequent measurements.

2.2  Characterizations

The surface morphology and the crystalline interplanar spac-
ing of ZnO thin films were characterized utilizing transmis-
sion electron microscope (TEM, JEM-2100F) and scanning 
electron microscope (SEM, JSM-7800 F). X-ray diffractom-
eter (XRD, DX-1000) was used to obtain XRD spectra. For 
electromechanical measurements, the pressure was applied 
using a linear motor (HS01-37 × 166) mounted with a digital 
force gauge (IMADA model ZPS-DPU-50N). The measure-
ments of I–V characteristics were tested using a Keithley 
4200 test system with a sweeping voltage between − 3 
and + 3 V. During the periodic I-T characteristic test, the 
applied voltage was -0.6 V. The electrical performances 
of the samples were recorded using a Keithley 6514 sys-
tem. Mott–Schottky plots were obtained from the CHI660E 
electrochemical station. Optical absorption spectra were 
acquired using a UV–visible spectrophotometer (UV2310II). 
The surface piezoelectric response (PR) was investigated by 
AFM (Bruker Multimode 8) with PFM (piezo response force 
microscopy) mode.

2.3  Deep Learning for Achilles Tendon Behavior 
Monitoring

The convolutional neural network (CNN) models were 
developed in Python based on Tensor flow and Keras 
kernel. A specialized 1D-CNN model was developed for 
efficient feature extraction and automatic human motion 
recognition. The network was designed to process input 
data sequences with a fixed length of 100 data points. The 
dataset was strategically partitioned for model development, 
with 80% allocated for training, 10% for validation, and the 
remaining 10% for testing the corrected optimal model 
parameters. Model optimization was performed using a 

stochastic  gradient descent  algorithm with momentum. 
The performance of the model was quantitatively evaluated 
through classification accuracy and loss function, enabling 
systematic parameter tuning for optimal deep learning 
performance. Through iterative training and validation, the 
1D-CNN model achieved robust recognition of Achilles 
tendon behavior patterns within 100 training epochs. Finally, 
the classification and analysis were carried out in terms of 
classification accuracy, rate, and loss function.

3  Results and Discussion

3.1  Working Mechanism of BPS and Achilles Tendon 
Monitoring

The human Achilles tendon, which connects the calf mus-
cles to the heel bone, is vital to athletic function and daily 
mobility. However, it is difficult to decouple the behav-
ior of the Achilles tendon because it often contains mixed 
dynamic and static forces [41–43]. Conventional meth-
ods for Achilles tendon detection primarily rely on large-
scale instruments or implantable piezoelectric materials, 
which are associated with significant limitations, including 
high costs, extended testing cycles, and the inherent risk 
of in vivo implantation [44]. To this end, we designed a 
Y-doped ZnO-based bimodal piezotronic sensor for com-
prehensive Achilles tendon monitoring (Fig. 1a). Typically, 
conventional piezoelectric sensors are typically known 
for their good dynamic response, yet they struggle with 
monitoring static forces. As shown in Fig. 1b, when sub-
jected to a constant external force, conventional piezo-
electric sensors generate transient electrical signals due 
to charge separation, but these signals rapidly decay due 
to charge neutralization. In contrast, the developed piezo-
tronic sensor demonstrates a unique bimodal response, 
maintaining stable electrical output that accurately tracks 
both changing and constant force. Taking ZnO as an exam-
ple, the fundamental distinction between the conventional 
piezoelectric sensor and the piezotronic sensor is sche-
matically illustrated in Fig. 1c. Conventional piezoelec-
tric sensors employ a sandwich structure that generates 
potential differences across the material thickness. While 
the piezotronic sensors, equipped with an external power 
source, utilize the piezoelectric potential to modulate inter-
facial barriers, thereby controlling current flow through the 
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sensor. The working mechanism of the BPS, based on a 
metal/insulator/piezoelectric semiconductor (M-I-S) struc-
ture, is schematically depicted in Fig. 1d. Taking an n-type 
semiconductor as an example, we define the silver elec-
trode at one end as the drain and the other as the source. 

The device generates positive piezoelectric charges at the 
insulator/semiconductor interface when strained along the 
c-axis [45]. Specifically, this piezoelectric polarization 
effectively lowers the potential barrier height, facilitating 
electrons crossing the barrier and generating measurable 

Fig. 1  Conceptual design and working mechanism of the BPS. a Schematic illustration of the human Achilles tendon behavior monitoring sys-
tem based on the BPS. b Conventional ZnO-based piezoelectric sensors are unable to detect static force due to the induced charge dissipating 
when an external force is maintained, while the piezotronic sensor can detect both static and dynamic forces. c Structural comparison between 
conventional ZnO-based piezoelectric (top) and piezotronic sensor (bottom). d Schematic diagram of the micro-working mechanism of the BPS. 
e Schematic of the metal/insulator/piezoelectric semiconductor structure of the BPS and corresponding conduction energy band profiles for the 
positive piezo-charge. f Deformation of BPS after being attached to the Achilles tendon, and g deformation of ZnO nanorod arrays, and h data 
processing workflow illustrating movement state analysis through deep learning



Nano-Micro Lett.          (2025) 17:241  Page 5 of 12   241 

current changes (Fig. 1e). Due to the external power supply, 
the change in the potential barrier height under a constant 
external force can always be maintained, thus providing 
the ability to detect static forces. When attached for Achil-
les tendon monitoring, as shown in Fig. 1f, the BPS tracks 
Achilles tendon deformation through corresponding bend-
ing or elongation, which in turn converts the mechanical 
strain into an electrical output via ZnO nanorod arrays 
(Fig. 1g). Subsequent deep learning analysis enables accu-
rate determination of Achilles tendon status, movement 
patterns, and overall tissue health, representing a signifi-
cant advancement in non-invasive biomechanical monitor-
ing technology (Fig. 1h).

3.2  Microstructure and Fundamental Characterization 
of ZnO and Y‑ZnO

To construct high-performance piezotronic sensors, we 
systematically investigated the effects of Y-ions doping 
on piezoelectric output of ZnO. As shown in the crys-
tal structure schematic (Fig. S1), Zn ions in the wurtz-
ite ZnO lattice are partially replaced by Y-ions (Y-ZnO) 
to induce structural asymmetry [46–48]. Morphological 
characterization through SEM reveals well-aligned ZnO 
nanorods (NRs) with distinct hexagonal facets, demon-
strating successful growth via the low-temperature hydro-
thermal method for both undoped (left) and Y-doped ZnO 

Fig. 2  Microstructure and fundamental characterization of ZnO and Y-ZnO. a Cross-sectional and b top-view SEM images of undoped ZnO 
(left) and Y-ZnO (right) NRs. Scale bars, 100 nm. c Cross-sectional EDS spectra of the BPS. d HRTEM images of ZnO and Y-ZnO NRs. Scale 
bars, 0.5 nm. e Schematic illustration of the KPFM measuring surface potential. f Comparative surface potential profiles between undoped ZnO–
Au (I) and Y-ZnO–Au (II). g VB-XPS, h XRD patterns, i room-temperature PL spectra, j Raman spectrum and k UV–vis absorption spectra of 
ZnO and Y-ZnO NRs 
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(right) samples (Fig. 2a, b). Elemental mapping analyses 
in Figs. 2c and S2, S3 confirm the uniform distribution 
of Zn, O, and C elements throughout the cross section, 
with Ag elements concentrated at the top surface, validat-
ing the successful preparation of the piezotronic sensor. 
X-ray photoelectron spectroscopy (XPS) analysis (Fig. S4) 
demonstrates the clear presence of Y elements in ZnO 
NRs, as evidenced by the distinct peaks corresponding to 
Y 3d5/2 (156.4 eV) and Y 3d3/2 (157.7 eV). High-resolution 
TEM (HRTEM) results reveal an expansion in crystalline 
interplanar spacing for Y-ZnO compared to undoped ZnO, 
implying an increase in lattice distortion (Fig. 2d). This 
structural modification significantly reduces free carrier 
concentration due to the enhanced carrier trapping by the 
distorted lattice. Furthermore, Kelvin probe force micros-
copy (KPFM) was employed to quantify the work function 
of ZnO before and after doping, as schematically illus-
trated in Fig. 2e. When a probe scanned from the ZnO sur-
face to the Au surface, the surface potential of the sample 
can be calculated according to the equation:

where VAu−Zn0 is the difference in surface potential 
between Au and ZnO, e is the elementary charge, �ZnO is 
the work function of ZnO, and �Au is the work function 
of Au (5.1 eV). According to the KPFM scanning images 
(Fig. 2f), the work functions of undoped ZnO and Y-ZnO 
are 4.455 and 4.639  eV, respectively, corresponding to 
a 0.184  eV enhancement after doping. This finding is 
corroborated by valence band XPS (VB-XPS) results, which 
reveals a 0.25 eV increase in work function (Fig. 2g) [49, 
50]. Meanwhile, structural characterization through XRD 
confirms the hexagonal wurtzite structure for both materials, 
with Y-ZnO showing a shift in the (0 0 2) diffraction peak 
to lower diffraction angles, suggesting expanded crystalline 
interplanar spacing after doping (Fig.  2h). In addition, 
the normalized room-temperature photoluminescence 
(PL) spectrum (under 325  nm continuous excitation) 
of the film demonstrates a reduction in oxygen vacancy 
 (VO) related defects (at about 630 nm) with increasing 
doping concentration (Fig. 2i). At the same time, Raman 
spectroscopy reveals a redshift of the characteristic peak 
at 437   cm−1, confirming lattice modification (Fig.  2j). 
UV–vis absorption spectra (Fig. 2k) show a left shift with 
doping, indicating the band gap widening of the sample. 
As shown in Fig. S5, electrical characterization confirms 
n-type conductivity for both materials, with reduced carrier 
concentration in Y-ZnO. Figure S6 shows the change in 

(1)VAu−Zn0 =
1

e

(

�Zn0 − �Au

)

the band gap of ZnO before and after doping [51], visually 
explaining the reason for the change in carrier behavior 
according to the following equation:

where α is the absorption coefficient, h is Planck’s constant, 
ν represents the photon frequency, the slope of the tauc 
plot in the linear region is denoted by A* and Eg is the band 
gap. For direct band gap ZnO (n =1/2), the analysis yields 
a band gap of 3.23 eV (undoped) and 3.26 eV (Y-ZnO), 
respectively. Finally, finite element simulations show that a 
decrease in carrier concentration leads to an enhancement 
of the piezoelectricity, suggesting that doping is an effec-
tive strategy for modulating the performance of piezotronic 
sensors (Fig. S7).

3.3  Electrical Performance of BPS

The fundamental distinction between piezotronic sensors 
and conventional piezoelectric sensors lies in their capability 
to detect static forces. As shown in Fig. S8, conventional pie-
zoelectric sensors exhibit transient electrical responses under 
constant force, whereas piezotronic sensors maintain stable 
output. By comparing their I-T curves under the same force, 
it can be seen that conventional piezoelectric sensors gen-
erate an electrical signal only at the instant when the force 
is applied or removed, whereas piezotronic sensors sustain 
stable output throughout the entire duration of force applica-
tion (Fig. 3a). As shown in Fig. S9, the piezotronic sensor 
exhibits no significant signal degradation over 600 s of con-
tinuous force application. By increasing the frequency of the 
external force, the piezotronic sensor is able to track changes 
accurately, whereas the conventional piezoelectric sensor 
only generates transient responses (Fig. 3b). Based on the I-T 
curves, the average response time and recovery time of the 
BPS are shorter than that of the conventional piezoelectric 
device (Fig. 3c). A comprehensive performance comparison 
in Fig. 3d establishes the superiority of piezotronic sensors 
across all critical metrics. From the pressure-dependent I-V 
characteristics of the BPS (Fig. 3e), both forward and reverse 
currents change dramatically with the applied pressure, indi-
cating the ability to respond to different external forces. In 
addition, a similar trend is observed across different bias 
conditions (Fig. 3f). Notably, the device achieves a remark-
able current change ratio ( of 1029 at − 0.6 V bias under 9 

(2)(�hv)
1

n = A
∗
(

hv − Eg

)
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N force (Fig. 3g), corresponding to 4.39% strain (Fig. S10), 
thus yielding an exceptional gauge factor of 23,439. Com-
parative analysis with some other existing ZnO-based piezo-
tronic or conventional piezoelectric sensors highlights the 
superior performance of the BPS (Fig. 3h) [24, 25, 52–60], 
demonstrating its great potential for advanced strain sensing. 
As can be shown in Fig. S11, the piezoelectric output of the 
Y-ZnO is roughly fivefold higher than that of pure ZnO. The 
piezoelectric output remains at the same magnitude after 
exchanging positive and negative electrodes, excluding tri-
boelectric interference (Fig. S12). Furthermore, the PFM 

images of ZnO and Y-ZnO, with randomly selected squares 
of 450 nm on each side, reveal enhanced piezoelectric output 
in Y-ZnO, with maximum potential fluctuations increasing 
from 20.2 to 73.4 mV after doping (Fig. 3i). Finally, we 
also measured the response of the BPS to a series of static 
pressures. As a result, the BPS demonstrates excellent static 
pressure response characteristics, accurately tracking both 
increasing and decreasing pressure profiles across multi-
ple cycles (Fig. 3j). By comparing the relevant parameters 
of ZnO and Y-ZnO, it can be understood that the funda-
mental reason for the enhanced piezoelectric output is that 

Fig. 3  Piezotronic modulation and electrical characterization of piezotronic sensor. Comparison of conventional piezoelectric sensor and piezo-
tronic sensor in a static force, b dynamic force detection and c response/recovery time. d Radar chart for comparing the different performances 
between the two sensors. e Pressure-dependent I-V characteristics of the BPS under the sweeping bias between − 3 and + 3 V. f Current-pressure 
relationship of the BPS under bias of − 1.5, − 1, − 0.6, 0, 0.6, 1, and 1.5 V. g Current change ratio (ΔI∕I

0
) as a function of pressure for the BPS 

under various forward and reverse bias conditions. h Comparison of gauge factor between this work and some existing ZnO-based sensors. i 
PFM testing results of ZnO and Y-ZnO. j Current response of the BPS under gradient static pressure of 7 ~ 19 N. k Fundamental property com-
parison between Y-ZnO and ZnO
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doping reduces the carrier concentration, increases the band 
gap, and improves the work function and surface potential 
(Fig. 3k). The increased distance between the Fermi energy 
level and the conduction band reduces intrinsic electron con-
centration [61, 62], minimizing polarization charge screen-
ing and significantly enhancing piezoelectric response. As a 
result, these modifications facilitate carrier transport across 
the semiconductor interface, ultimately resulting in the 
improved performance of the BPS.

3.4  Achilles Tendon Behavior Monitoring Assisted 
with Machine Learning

The Achilles tendon is particularly vulnerable to injury 
during overloaded conditions caused by improper exercise 
postures, such as overfatigue or excessive force [63]. Here, 
the developed BPS, combined with machine learning algo-
rithms, enables Achilles tendon monitoring, as shown in 
Figs. 4a and S13. First, the BPS is attached to the Achil-
les tendon for movement state detection. Then, the obtained 
electrical signals are transmitted to the deep learning algo-
rithms. Finally, the recognition results are displayed on the 
visualization interface for monitoring or early warning. In 
fact, different Achilles tendon states correspond to different 
stresses, resulting in differences in the magnitude and wave-
form of the outputs from the piezotronic sensors. In Fig. 4b, 
when performing a tiptoe stance with a healthy tendon, the 
BPS generates a strong and stable current output due to the 
uniform force distribution (I). Conversely, a heel stance 
results in reduced deformation and consequently weaker, but 
still stable, current output as the BPS changes from a bent 
state to a stretched state (II). When the Achilles tendon is in 
a disease state, the impaired muscle is unable to exert force 
properly, as evidenced by the weak current output during 
tiptoe stance, because the BPS has a small degree of bending 
(III). If the volunteer walks, the movement cannot be main-
tained normally due to the weakness and pain of the mus-
cles, so the device shakes with the Achilles tendon, resulting 
in fluctuated and weak current output (IV). Figures 4c and 
S14 summarize the current intensities and waveform for the 
four states and the I-V characteristic curves for the normal 
and abnormal states, quantitatively comparing the electrical 
outputs for the different states. Finally, the capability of the 
BPS for continuous monitoring static and dynamic forces 
was validated through the Achilles tendon rehabilitation test 

(Fig. 4d). In the test, the volunteer stood on tiptoe, held it for 
10 s, repeated it 4 times, and then moved quickly to relieve 
the muscle pain and discomfort. Clearly, the electrical output 
from the BPS matches the whole process perfectly, demon-
strating its good motion detection capability. Furthermore, 
machine learning training was performed on the data to rec-
ognize different Achilles tendon states. With the assistance 
of the 1D-CNN algorithm, the proposed model achieves high 
classification accuracy and robustness after 100 training ses-
sions (Fig. S15). The high-dimensional data of the output is 
transformed into the low-dimensional data via t-distributed 
stochastic neighbor embedding (t-SNE) visualization, which 
results in five distinct clusters with 95% confidence intervals, 
corresponding to different tendon states (Fig. 4e). The con-
fusion matrix analysis demonstrates excellent recognition 
capability, with an overall classification accuracy of 96% 
(Fig. S16). Moreover, when the normal thresholds are set 
for the tiptoeing (Fig. 4f), exercising, and stretching, respec-
tively, the system sends out a reminder to prevent the Achil-
les tendon from being damaged when the exercise is too 
strenuous. In summary, the above results demonstrate that 
the developed BPS represents a significant stride in simulta-
neous detection of dynamic and static forces, laying a solid 
foundation for its practical applications and contributes to 
the advancement of non-invasive monitoring technology.

4  Conclusion

In summary, we demonstrated a high-sensitivity bimodal 
piezotronic sensor based on Y-ion-doped ZnO. Utilizing the 
piezotronic effect, the developed device exhibits exceptional 
electromechanical performance, with an on/off ratio of up 
to 1029, a gauge factor of up to 23,439, and sustained static 
force response capability exceeding 600 s. These character-
istics represent significant advancements over conventional 
piezoelectric sensors, particularly in simultaneous static and 
dynamic force detection. As a proof-of-concept, the devel-
oped piezotronic sensor could accurately recognize the 
Achilles tendon behavior continuously, achieving classifica-
tion accuracy of 96% for decoupling complex biomechanical 
signals. Excellent sensitivity and bimodal monitoring capa-
bility make the BPS ideal for user-friendly, long-term health-
care monitoring wearables. This work inspires dedication 
to developing promising bimodal sensors in digital health 
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monitoring, intelligent soft robotic systems, and interactive 
wearable electronics.
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