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HIGHLIGHTS

• Oriented to the understanding of MAX series materials, the research timeline, structure diversity, and synthesis are systematically reviewed.

• The prediction, properties, and functional applications of MAX series materials are summarized.

• This review emphasizes research challenges for the future development of MAX series materials.

ABSTRACT MAX series materials, as 
non-van der Waals layered multi-element 
compounds, contribute remarkable regu-
lated properties and functional dimen-
sion, combining the features of metal and 
ceramic materials due to their inherently 
laminated crystal structure that  Mn+1Xn 
slabs are intercalated with A element lay-
ers. Oriented to the functional require-
ments of information, intelligence, elec-
trification, and aerospace in the new era, 
how to accelerate MAX series materials 
into new quality productive forces? The 
systematic enhancement of knowledge about MAX series materials is intrinsic to understanding its low-dimensional geometric structure char-
acteristics, and physical and chemical properties, revealing the correlation of composition, structure, and function and further realizing rational 
design based on simulation and prediction. Diversity also brings complexity to MAX materials research. This review provides substantial tabular 
information on (I) MAX’s research timeline from 1960 to the present, (II) structure diversity and classification convention, (III) synthesis route 
exploration, (IV) prediction based on theory and machine learning, (V) properties, and (VI) functional applications. Herein, the researchers can 
quickly locate research content and recognize connections and differences of MAX series materials. In addition, the research challenges for the 
future development of MAX series materials are highlighted.
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1 Introduction

Oriented to the functional requirements of information, 
intelligence, electrification, and aerospace in new era, 
materials science research is the cornerstone of supporting 
technological innovation, which can endow equipment and 
systems with new functions and characteristics in various 
fields, accelerating the realization of technological break-
throughs. Due to their similar atomic arrangements, a series 
of transition metal carbides, nitrides, and carbonitrides are 
categorized as MAX series materials (MAXs), once named 
H-phases in 1960s [1]. Up to now, over 383 different types 
of MAXs have been reported based on synthetic strategy 
innovation on solid-state reaction sintering, melting reac-
tion, and physicochemical deposition. Meanwhile, a series 
of novel MAXs are predicted by theoretical simulation and 
machine learning. The diversity investigations in elemental 
composition and structure bring the adjustable properties: 
ceramic characteristics (high-temperature resilience [2], 
strength [3], and oxidation resistance [4]); metallic proper-
ties (conductivity [5], thermal conduction [6], machinability 
[7], and impact durability [8]). MAXs are intended in the 
potential function requirements in rail transportation lubri-
cation [9], heating components [10], electrical contacts [11, 
12], electromagnetic shielding [13], microwave absorption 
[14], high-level radioactive waste solidification [15], and 
electrochemical energy storage [16, 17]. MXene series mate-
rials, as the low-dimensional derivatives, showed potential 
applications in electrochemical energy storage [18], lumi-
nescence [19], catalysis, and other fields [20, 21]. Figure 1 
shows the high-frequency keywords of MAX’s research. 
However, MAXs are not a material cornerstone to future 
industrialization prospects. How to accelerate MAXs into 
new quality productive forces? It is intrinsic to understand 
its low-dimensional geometric structure characteristics, and 
physical and chemical properties, to reveal the correlation of 
composition, structure, and function and further to realize 
rational design based on simulation and prediction.

Herein, oriented toward structure and function correla-
tion, the information retrieval on (I) MAX’s research time-
line from 1960 to the present, (II) structure diversity and 
classification convention, (III) synthesis route exploration, 
(IV) prediction based on theory and machine learning, (V) 
properties, and (VI) functional applications are described in 
categories to help readers quickly understand the research 

progress of MAXs. Moreover, by integrating advanced syn-
thesis and characterization techniques and machine learning, 
some existing problems are addressed, and future research 
directions are prospected.

2  Historic Milestones and Timeline

Reviewing the history of MAXs helps understand the limita-
tions of science, technology, and society on the innovative 
research, as shown in Fig. 2. Back to 1960, Rohde et al. [22] 
found  Ti4S2C2 and  Zr4S2C2 by heat treatment of Ti, S, C, 
and Zr at 1600 °C. Between 1960 and 1967, Nowotny et al. 
[23–26] synthesized a series of ternary layered carbides/
nitrides, including  Ti2AlC,  V2AlC,  Cr2AlC, and  Nb2AlC, 
which were named as H-phases. In 1970s, Nickl et al. [27] 
prepared  Ti3SiC2 by chemical vapor deposition (CVD). 
In 1994, Pietzka et al. [28] synthesized  Ti3AlC2 by a cold 
pressing sintering method and proposed the thermochemi-
cal stability limitation based on the formation free energy 
of the binary intermediate phases of TiAl, TiC, and AlC. 
In 1996, Prof. Barsoum et al. [8] achieved a dense  Ti3SiC2 
MAX bulk by reactive hot pressing (HP) technology. In 
2000s, a review article entitled "The  MN+1AXN Phases: A 
New Class of Solids; Thermodynamically Stable Nanolami-
nates" was published in Prog. Solid St. Chem. The concept 
of "Mn+1AXn phases (MAX)" was proposed based on the 
unique structural features and properties, which opened a 
new era of MAXs [1].

In 2002, Palmquist et al. [29] employed DC magnetron 
sputtering technique to prepare the oriented  Ti3SiC2 and 
 Ti4SiC3 MAX single-crystal thin films; in addition, two 
previously unknown compounds of  Ti5Si2C3 and  Ti7Si2C5 
MAXs were observed. In 2006, Lin et al. [30] found a pre-
viously unknown  Ta6AlC5 in the ternary Ta-Al-C system. 
In 2008, Tian et al. [31] prepared high-purity  Cr2AlC using 
molten salt sintering, which reduce the sintering temperature 
by 200 °C. This is a breakthrough in the MAX prepara-
tion strategy. In 2009, Zhang et al. [32] determined a new 
MAX phase (716-phase  Ti7SnC6). In 2011, Naguib et al. 
[33] found "MXene," "MX" stands for the element left after 
MAX etching, and "ene" stands for the 2D material structure 
features. In 2014, Liu et al. [34] reported the first out-of-
plane ordered MAX phase exhibiting perpendicular to the 
M-layer, called o-MAX. In 2017, another type of ordered 
MAX called in-plane ordered MAX (i-MAX) was first 
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discovered by Tao et al.[35]. In 2019, Huang et al. [36, 37] 
used Lewis acid molten salt to realize the element replace-
ment and created a series of new MAXs containing Zn and 
Cu elements at A-sites. In 2019, Li et al. [38] synthesized 
 V2(AxSn1−x)C MAX (A = Fe, Co, Ni, Mn or their binary/
ternary/quadratic combinations) based on alloying-guided 
reactions. In 2022, by pressureless sintering at 1500 °C, Du 
et al. [39] developed a series of high-entropy MAXs and fur-
ther the high-entropy MXene. In 2023, Ding et al. [40] pro-
posed a chemical scissor-mediated structural editing strategy 
to allow the unconventional elements into interlayer atom 
vacancies to form new MAXs, thus revolutionizing tradi-
tional metallurgic reactions. In 2024, Li et al. [41] reported 

a universal method of A-site preferential alloying to form 
noble metal MAXs.

Thanks to the fine structural analysis of the MAXs by 
early researchers, this is the foundation for discovering struc-
tural similarities. Contributions to the development of prepa-
ration methods allow us to see the diversity of MAXs. Upon 
application requirements, the chemical and physical proper-
ties, as well as the functional applications, are investigated. 
In the past 60 years, progress in basic research of MAXs 
comes alongside successes in preparation, characterization, 
property, and function.

Fig. 1  High-frequency keywords of MAX series materials

Fig. 2  Timeline of MAX series materials
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3  Diversity and Classification Convention

3.1  Element Diversity

In the up-to-date periodic table of the elements, 28 M, 29 A, 
and 6 X-site elements are found that can be utilized to form 
MAXs. This means that MAXs can contain nearly 50% of 
elements, as shown in Fig. 3. So why do MAX show such 
strong elemental inclusiveness? This is due to the unique 
layered structure, as well as the bonding and arrangement 
between M-A and M-X, which gives the atoms a high free-
dom degree of spatial and chemical coordination in their 
arrangement and bonding. Of course, the reported elemental 
composition also reflects the rules.

In the M-site, there are 28 kinds of elements that can par-
ticipate in the composition, and the elements in the M-site 
have been extended from the previously well-known transi-
tion metallic elements, such as Ti, V, and Cr [23–25], to the 
rare-earth elements, such as Ce, Pr, and Nd [42–44]. Among 
them, lanthanide elements can participate in the M-site with 
MM’ as an ordered solid solution state. Fe, Ni, Cu, and Pd 
can only exist in solid solution at the M-site with other ele-
ments [45–47]. The element of W can participate in both 
ordered and disordered solid solutions but cannot exist at 
the M-site alone [44, 48]. Hf, Ta can appear in M-site disor-
dered MAX [49, 50]. Mn, Zr, Sc, and Y have been added to 
the M-site element [51–53]. Meanwhile, a series of i-MAXs 

containing Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu 
also are introduced in the M-sites [44].

For A-site, there are 29 kinds of elements that can partici-
pate in the composition, including group IIIA, group IVA, 
and transition metal elements such as Au, Ir, Zn, Cu, Fe, Co, 
Ni, Sb, and Pt [40, 41, 54]. In addition, P, S, As, Te, and Tl 
are reported to participate in the formation of ternary A-site 
[23, 55–57]. Mn, Rh, Pd, and Ag are reported to appear 
at A-site with other elements as solid solutions [38, 40, 
41]. Au, Ir, and Zn are introduced by substitution reaction 
at the A-site [36, 54]. These magnetic elements of Fe, Co, 
Ni, and Mn were utilized to prepare  V2(AxSn1−x)C [38]. Fe 
was introduced to form  Ta2FeC,  Ti2FeN, and  Nb2FeC [58]. 
Relying on a chemical structure editing strategy, the uncon-
ventional elements (Bi, Sb, Fe, etc.) can be intercalated into 
A-sites [40]. A series of noble metal elements were intro-
duced to prepare  M2(A1−xA′x)C (where M = Ti, V, or Nb; 
A = Sn, Al, Ge, Ga, and In; and A′ = Ru, Rh, Pd, Pt, Ir, and 
Au, with 0 < x ≤ 0.4) by the method of A-site alloying-guided 
strategy [41].

X-sites include C, N, B, P, O, and Se. C, N, and B can 
exist independently. Relying on the partial substitution strat-
egy of X,  Ti2AlC1−xOx,  Nb2SBxC1−x,  Zr2Se(B1−xSex) show 
that elements O and Se can only be combined with C and B 
at X-site [59–61]. The B-containing MAXs with a symmetry 
of  P63/mmc are different from MAB materials [62–64]. In 

Fig. 3  Periodic table of the elements in the MAX series materials
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addition,  Hf2SB,  Ti2SbP,  Zr2SbP, and  Hf2SbP containing P 
MAXs are reported.

Based on the combination of different elements, MAXs 
show great element compatibility. The inherent features of 
different elements induced the diversity of MAX in struc-
ture, properties, and functions. The element combination 
rules are essential for expanding the types of MAXs. To 
facilitate the search, the reported MAXs are classified in 
Table 1.

3.2  Structure Diversity and Classification

3.2.1  Structure Classification

Herein, to more precise structural identification, MAXs are 
classified into three main types:

• Type I:  Mn+1AXn (n = 1 ~ 6), hexagonal  (P63/mmc)
• Type II:  Mn+2A2Xn (n = 3, or 5), cubic (R 3 m)
• Type III:  Mn+1A2Xn (n = 1, or 2), hexagonal  (P63/mmc)/ 

cubic (R 3 m)/ hexagonal (P 3 m1)

Type I: the ternary MAXs, as  Mn+1AXn (n = 1 ~ 6), exhibit 
a hexagonal layered structure within the  P63/mmc space 
group (Fig. 4a). Each X atom occupies the center of an octa-
hedron formed by six tightly packed M atoms, with A atoms 
positioned between layers of  M6X. This results in a layered 
structure comprising alternating  M6X and A atom layers. n 
signifies the number of MX octahedral layers between the 
A atom layers; the values of n = 1 ~ 6 allow for further clas-
sification [1, 28, 178, 181, 202, 203]. Moreover,  Mo4VAlC4 
is found to be a symmetric structure of herringbone P 6 m2 
with the disordered solid solution [200]. The structure of 
 (Mo1−xVx)5AlC4 was studied in depth by Snyder et al. by 
using high-resolution X-ray diffraction and TEM images, 
and the Rietveld refinement showed that the most suitable 
space group for  (Mo1−xVx)5AlC4 is the P-6c2 rather than the 
conventional  P63/mmc space group [199].

Type II: intergrown ternary MAXs,  M5A2X3 and  M7A2X5, 
show the crystal structure’s space group of R 3 m due to the 
disrupted symmetry owing to the sequence and thickness of 
the alternating  Mn+1Xn layers.  Ti5Si2C3 and  Ti7Si2C5 were 
reported with a longer c-axis of 30.4 and 40.4 Å, respec-
tively [29]. Type II MAXs are essentially combinations of 
Type I subunit cells; for instance, the 523 phase is a merger 
of the 312 and 211 phase subunits. The 725 phase represents 

a hybrid of the 312 and 413 phase subunits, with layers 
of 3- and 4-layer carbides alternating between A layers 
(Fig. 4b). To date,  Ti5Si2C3,  Ti7Si2C5,  Ti5Al2C3,  Ti5Ge2C3, 
and  Ti7Ge2C5 have been identified, as Type II MAXs [29, 
154, 183, 194].

Type III MAXs are defined as  Mn+1A2Xn, n = 1 or 2. M 
atomic layers are spaced by double A atomic layers (Fig. 4c). 
A series of  Mo2Ga2C,  Nb2Bi2C,  Ti3Cd2C2,  Nb2S2C, 
 Ti2Au2C, and  Ti3Au2C2 MAX are found [40, 196, 204]. 
Notably,  Mo2Ga2C exhibits hexagonal symmetry (space 
group  P63/mmc), akin to Type I [196, 205]. In addition, the 
space symmetry group of hexagonal/ P 3 m1 were first iden-
tified at 1 s-Nb2S2C, and 3 s-Nb2S2C is cubic R 3 m [195]. 
 Ti2Au2C and  Ti3Au2C2 show a trigonal crystal structure, 
with space group P 3 m1 [197].

Objective to study structure isomerism, the M-X octa-
hedrons are found to appear slightly deviation from their 
standard position. This induced a formation of α, β, and γ 
MAX polymorphs, respectively, with distinctions primarily 
in the stacking patterns of adjacent M-X segments [202, 
206]. According to the principle of minimum energy, 211 
phases exhibit a single-crystal form (α-M2AX), 312 phases 
exhibit two (α-M3AX2 and β-M3AX2), and 413 phases 
exhibit three (α-M4AX3, β-M4AX3, and γ-M4AX3). A-layer 
atomic slippage induces structural transformation from α to 
β to γ MAXs, accompanied by changes in atomic positions. 
For detailed atomic occupancy information, please refer to 
Chapter 2 in “MAX Phases: Properties of Machinable Ter-
nary Carbides and Nitrides,” Michel W. Barsoum [207].

3.2.2  Solid Solutions

Multi-element occupations at the M, A or X sites create the 
solid solution MAXs in Table 1. Due to the mutual modula-
tion between various elements, these atoms show two kinds 
of arrangement states: disordered and ordered. An ordered 
arrangement is that each M′ and M′′ atom occupies, respec-
tively, a separate atomic layer and shows the out-of-plane 
ordered structure. Within a single atomic layer, there is only 
one type of M atom. M′ atomic layers envelop one or two 
layers of M′′ atomic layers (as shown in Fig. 5a). This type 
of ordered solution of MAXs is marked as o-MAXs and 
remains hexagonal  (P63/mmc) [164]. The ideal o-MAXs of 
312 M’2 M’’AX2 and 413 M’2 M’’2AX3 present a relatively 
accurate proportion of M’/M’’ [208]. Recently, the third 
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metal element was introduced as doping atoms in M’/M’’-
site in disordered form [166]. A series of correlations were 
discovered, (i) M’ near the A atomic layer does not form 
the corresponding binary rock salt MC structure, (ii) M’ 
and M’’ atomic sizes are similar, and (iii) the electronega-
tivity between M’ and A is different [209, 210]. The other 
ordered arrangement is that M′ and M′′ atoms appear in the 
same atomic layer and exhibit the in-plane ordered structure 
(i-MAX) [35]. It is worth noting that i-MAX showcases a 
blend of monoclinic (C2/m and C2/c) and orthorhom-
bic (Cmcm) crystal structures (as shown in Fig. 5b). The 
deviation from hexagonal symmetry in the i-MAX structure 
arises from the atomic size difference between the two met-
als being greater than 0.2 Å (rM’ < rM’’), which causes the 
M’ and M’’ atoms to no longer occupy the same planes. 
The M’’ atoms move closer to the A-layer, influencing the 
structure of the A-layer and causing it to deviate from a 
hexagonal lattice toward a Kagomé-like lattice. However, 
the three types of i-MAX structures still maintain the same 
Al-M’4/3 M’’2/3-Al subunit, with only the stacking arrange-
ment along the c-axis differing [122]. The solid solution 
orderly structure of i-MAXs is significantly influenced by 
the mass and atomic radii of their constituent elements. The 
i-MAX enriched with lighter elements like Ce and Pr tends 
to adopt the C2/m structure, while those with heavier ele-
ments such as Tb, Nd, Gd, Dy, Ho, Er, and Tm favor the 
C2/c structure [42]. It is driven by atomic radius differences, 
particularly among M elements with larger radii. The vary-
ing distances of M elements to A elements and the structural 
configurations of M′ and M′′ elements are key factors in this 
differentiation [43, 52].

Explorations into A-site and X-site solid solutions offer 
a strategic avenue for tuning the structures and function-
alities of MAXs. Ge, Fe, Co, Ni, Mn, Au, Pt, Ru, Sb, Ir, 
Pd, Rh, Bi, and Cu are introduced into A-site [38, 40, 41]. 
Dual-site solid solution MAXs, where element solid solu-
tions occur at two sites among M, A, or X, with those sites 
occupied by multiple elements, predominantly take place 
at the M- and A-sites. This is because the X site is usually 
filled by C and N [78, 138], while a broader selection of 
elements for M- and A-sites facilitates the formation of 
dual-site solutions [141, 143].

There is no doubt that great achievements have been 
made in the study of the element and structural diversity of 
MAXs, which laid the foundation for the development of 

properties and functions. At the same time, it also made us 
realize that MAXs is an extremely complex material sys-
tem, and it is necessary to systematically understand the 
internal relationship between its elements and structures.

4  Synthesis Strategy

MAXs’ synthesis is a multi-level and complex process, 
involving multiple physical and chemical phenomena such 
as atomic diffusion, chemical bond breaking and forma-
tion, and so on, which lies in the reconstitution of chemical 
bonds and atomic structures to a specific layered structure. 
M-X bonds help maintain the structure’s stability, while 
the weak M–A bonds provide a large degree of freedom 
for the diffusion of A atoms. This weak bond property 
enables rapid migration of A atoms, which promotes the 
formation of the MAXs. The synthesis strategies of solid, 
molten salt, and vapor systems are described.

4.1  Solid‑State Reaction

Solid-state reaction sintering typically employs solid pow-
der particles including M powders or their metal hydrides, 
elemental A metal powders, graphite powders, and metal 
nitrides, as the precursors. Relying on a high-temperature 
and pressure environment (Fig. 6a–f), the diffusion kinet-
ics of the constituent atoms is accelerated, and form  MxXy, 
or  MxAy at the interface of these precursor particles. Upon 
increased temperature,  MxXy and  MxAy react to form MAX.

4.1.1  Pressureless Sintering

Pressureless sintering employs high-temperature devices like 
tubes and muffle furnaces (Fig. 6a). The precursor’s particle 
size, chemical stoichiometry, heating rate, peak temperature, 
and duration are critical for MAXs formation. This method 
produces MAXs with lower densities, facilitating their con-
version into powders. Its benefits include straightforward 
operation, versatile precursor selection, and adaptability 
for mass production. However, it requires extended dura-
tion at high temperatures, results in lower densities, and 
necessitates ball milling for particle size adjustment. This 
approach has been successfully applied in the synthesis of 
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materials such as  V2SnC,  Ti3AlC2,  Ti3GaC2, among others 
[28, 89, 145, 211]. Carbon materials can be employed to 
reduce metal oxides at high temperatures. Therefore, these 
conventional oxides are expanded as the precursor powders 
of MAXs. Utilizing  Cr2O3,  V2O5, Ga, Ge, and C, a series of 

high-purity MAXs  (Cr2GeC,  Cr2GaC,  V2GeC) are prepared; 
the initial carbon content crucially influenced  Cr2GaC’s con-
version rate [212].  Ti3SiC2 is also prepared by  TiO2 and 
 SiO2, highlighting cost-effectively [213].

Fig. 4  Atomic arrangement of MAX series materials. a Type I, b Type II, c Type III
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4.1.2  Hot Press Sintering

Hot pressure is introduced via a hot press furnace. The pro-
cess involves ball milling precursors for uniform mixing, 
followed by hot pressing (low pressure at 1000–1500 °C 
and high pressure at 1200–2000 °C) to aid the synthesis 
and densification processes (Fig. 6b). This technique’s merit 
lies in its ability to directionally advance precursor reactions 
under pressure, preventing precursor loss through sublima-
tion in a sealed environment, making it ideal for creating 
dense MAX bulk materials. However, this technology also 
has some drawbacks, such as potential carbon pollution from 
graphite molds, scalability challenges, and high stability 
requirements for equipment due to long-term high-pressure 
conditions [70].

4.1.3  Hot Isostatic Pressure Sintering

Hot isostatic pressing sintering uses an inert gas as a pressur-
izing medium in a high-pressure environment. The workflow 
involves ball milling to blend precursor powders, pre-press-
ing into solid bulks, sealing in inert gas, and then sintering. 
Operating within a temperature range of 1000–2000 °C and 

under inert gas pressures reaching 200 MPa, this method 
ensures uniform compression of MAX at high temperatures 
and pressures, resulting in superior density and uniformity 
(Fig. 6c). This technique is valued for its rapid production 
time, streamlined process, reduced energy usage, and lower 
material wastage. However, the reaction scalability of this 
method is limited due to the requirement of encapsulating 
the precursor powder in a specific glass or metal container 
[88].

4.1.4  Self‑Spreading High‑Temperature Synthesis

Relying on the exothermic reaction, self-spreading high-
temperature synthesis leverages to facilitate solid-state 
reactions. The procedure involves pre-pressing precursor 
materials into compact particles, igniting these particles 
with tungsten or molybdenum wire in a vacuum to avoid 
oxidation, and conducting the self-propagating sintering 
process where temperatures can soar up to 2000 °C, with 
combustion wave speeds reaching 25 cm  s−1. This leads to 
the creation of porous MAX particles (Fig. 6d) [214, 215]. 
The benefits include its straightforward execution, fast reac-
tion, and minimal energy requirements. Nonetheless, it faces 

Fig. 5  Ordered MAX series materials. a Out-of-plane ordered 312 and 413 o-MAX; b in-plane ordered i-MAX.  Reproduced with permission 
from Ref.[208]. Copyright 2023, Elsevier
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Fig. 6  a Pressureless sintering. b Hot press sintering. c Hot isostatic pressure sintering. d Self-spreading high-temperature synthesis. e Micro-
wave. f Spark plasma sintering. g Lewis acidic molten salt routes. h Structural editing based on chemical scissor-mediated intercalation protocol. 
i Molten salt electrolysis. j Ion beam sputtering. k Low-pressure CVD system
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challenges such as difficulty in controlling the reaction, a 
high and uncontrollable amount of secondary phases, and 
poor repeatability.

4.1.5  Microwave

Microwave heating’s rapid process stems from the intense 
interaction between solids and microwave radiation, reach-
ing exceedingly high temperatures (Fig. 6e). Despite its 
advantages of easy operation, fast reaction speed, and high 
cost-effectiveness, microwave sintering still faces many bot-
tlenecks that need to be overcome, such as the type limita-
tions of MAX, difficulties in thermal management, precision 
issues in temperature monitoring and control, uneven heat-
ing, cracking of sintered parts, and challenges of uniform 
heating over large areas [105, 109, 203].

4.1.6  Spark Plasma Sintering

Spark plasma sintering employs electric currents and local-
ized high-temperature heating to foster plastic deformation 
and diffusion among precursor powders, facilitating bonding 
and sintering (Fig. 6f), which were utilized for the preparation 
of  Zr3InC2,  Hf3InC2,  Zr3SnC2, and  Hf3SnC2. Spark plasma 
sintering combines plasma activation, hot pressing, and 
resistance heating to offer benefits such as quick tempera-
ture escalation, brief sintering durations, lower temperatures, 
and grain uniformity, aiding in precise microstructure control 
and achieving high-density materials. Despite its operational 
simplicity and repeatability, its drawbacks include significant 
energy demands, complex machinery, challenging mainte-
nance, and elevated equipment costs [147, 148, 216].

4.2  Melting Reaction

4.2.1  Molten Salt Sintering

The molten salt sintering technique leverages the flow prop-
erties of low melting point salts to enhance the delivery and 
spread of precursor materials for MAXs, improving the 
interaction among reactants to control reaction kinetics, 
the nucleation and growth processes [87]. These key pro-
cedures include: (1) the types of molten salts; (2) sintering 
temperature, rate, and duration; (3) isolation and purification 

of products. The selection of an appropriate molten salt is 
pivotal; the salt’s melting point should be lower than the 
metal precursors to ensure a liquid state; in addition, the 
cost-effectiveness, solubility in water, and the diffusion rate 
of reactants are considerable. Furthermore, an inert envi-
ronment can prevent oxidation of metal precursors. The 
advantage lies in high purity, uniform size, and low sintering 
temperature based on recycled molten salt. However, there 
are disadvantages such as high cost and environmental pollu-
tion. Future research will focus on environmentally friendly 
molten salts, sintering optimization, and functional ceramic 
development [217, 218]. In addition, molten salts are also 
employed as electrolytes to assist the electrochemical syn-
thesis of MAXs (Fig. 6i) [219].

4.2.2  Lewis Salt Substitution Strategy

Lewis acid molten salts (LAMS) enable the A-site atoms to 
bond with the molten salt’s anions, while the molten salt’s 
cations migrate into the vacancies left by the A atoms (as 
shown in Fig. 6g). To obtain high-quality MAXs, these pro-
cesses should be strictly controlled: (1) the proportion of 
MAX and LAMS; (2) the reaction temperature and envi-
ronment; (3) the separation and purification of products. 
Based on the LAMS, a series of MAXs with new A-sites 
are prepared, such as  Ti3ZnC2,  Ti2ZnC,  Ti2ZnN, and  V2ZnC 
[36],  Ti2(AlxCu1−x)N and  Nb2CuC,  Ti4CuN3 [182]; some 
transition metals, like Fe, Co, Ni, Cu, etc. are incorporated 
into new MAXs via homologous substitution reactions 
[40]. Meanwhile, an innovative method of interlayer chemi-
cal reaction mediated by "chemical scissors" was further 
reported, significantly expanding the element types of 
MAXs, as shown in Fig. 6h. Route I: LAMS cations act as 
"chemical scissors" to etch A-site atoms of MAXs, open-
ing non-van der Waals gaps and forming interlayer atomic 
vacancy structures; Route II: solvated intercalation atoms in 
molten salt diffuse into interlayer atomic vacancies to form 
MAXs. The synergistic effect of the "chemical scissors" and 
the guest ions offers greater space for interlayer composition 
and structural regulation, resulting in a series of new MAXs 
containing conventional A-site elements (Al, Ga, In, and 
Sn) and unconventional A-site elements (Bi, Sb, Fe, Co, 
Ni, Cu, Zn, Pt, Au, Pd, Ag, Cd, and Rh) [220]. Lewis salt 
replacement strategy realizes the structure editing of MAXs, 
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interlayers unconventional elements into the A atomic layer 
of MAXs, breaks through the traditional metallurgical reac-
tion bound, and expands the types and application range of 
MAX family. However, due to the limited types of Lewis 
salt, the complex reaction process and high cost make large-
scale preparation impossible. In the future, how to develop 
the new Lewis salts, further study the reaction mechanism, 
and optimize the sintering process is crucial to form new 
quality productivity based on MAXs.

4.3  Vapor Deposition

4.3.1  Physical Vapor Deposition

Physical vapor deposition (PVD) is reported for prepar-
ing MAX thin films with high purity, controllable com-
position, and wide applicability. Under high vacuum 
conditions, PVD can effectively avoid the introduction of 
impurities and achieve precise control of the thickness and 
composition of films. As shown in Fig. 6j, the processes 
include (1) the selection of substrates and MAX targets; 
(2) PVD deposition of the thin film under a protective 
atmosphere; and (3) annealing treatment. However, due 
to the specific crystal structure required for MAXs, PVD-
deposited films often exhibit amorphous or mixed phases 
and require high-temperature annealing (usually 600–1200 
°C) to crystallize [221, 222]. In addition, the high equip-
ment requirements limit the large-scale production of 
PVD, and the internal stress during the deposition process 
affects the quality and adhesion of the films.

4.3.2  Chemical Vapor Deposition

Chemical vapor deposition primarily involves creating thin 
films by chemical reactions of gaseous compounds or ele-
ments on the substrate surface. The process entails several 
critical steps: (1) selecting and cleaning the substrate is 
pristine to ensure a clean surface; (2) choosing the appro-
priate reactive gases to match the MAX targets’ require-
ments; (3) managing the reaction by placing the substrate 
in a reaction chamber, introducing selected gases, and 
heating to the desired temperature; (4) modifying depo-
sition rates and film quality by adjusting the deposition 
duration and gas flow; (5) cooling the films. A mixture of 

 TiCl4,  SiCl4,  CCl4, and  H2 gases are employed to fabricate 
polycrystalline  Ti3SiC2 MAX films [223] (Fig. 6k).

383 variants with diverse elemental compositions, and 
crystalline structures are prepared through methods like 
reaction sintering and molten salt techniques. These meth-
ods can precisely manipulate the microstructure, shape, 
and defects of MAXs. Efforts are ongoing to enhance 
the purity of the outcomes, boost preparation efficiency, 
streamline the process, and cut down on energy use and 
environmental impact.

Despite the growing variety of methods to prepare MAXs, 
the process encounters several hurdles. Primarily, the synthesis 
of MAXs requires high-temperature and high-pressure envi-
ronments, posing a challenge for scaling up and industrial pro-
duction. Synthesis often occurs at temperatures ranging from 
1000 to 1700 °C and pressures from 1 to 50 MPa, necessitating 
special equipment and techniques that increase costs and risks. 
Frequently, the synthesis results in incomplete reactions, lead-
ing to products with impurities and defects that compromise 
their purity and functional properties. For instance, excessive 
reactions between the M element with A or X elements can 
result in unwanted MA or MX phases, or internal diffusion 
of the A element can disrupt the A-layer structure, diminish-
ing the electrical and thermal conductivity and the oxidation 
resistance of MAXs. Moreover, controlling MAXs’ geometri-
cal morphology and crystal structure is challenging, limiting 
their utility. Typically as powders or bulks, it is challenging to 
fabricate MAXs into coatings, films, or fibers. Their layered 
structure complicates the creation of heterogeneous or com-
posite configurations, thus limiting their potential applications 
across various application scenarios.

5  Simulation and Prediction

Due to their intricate crystal structures and complex elemen-
tal makeup, high costs, low efficiency, limitations on shape, 
harsh synthesis conditions, and complex equipment hindered 
the advancement of novel MAXs. Simulation and prediction 
can aid scientists in delving into the physical and chemical 
essences and linking composition, structure, and properties. 
The synergy between experimental validation and computer 
simulation enriches the developmental insights and guidance 
for MAXs. Expedited exploration of new MAXs necessitates 
the leverage of supercomputing power. Techniques such as 
introducing new elements, cluster expansion, random crystal 
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structure prediction, and evolutionary algorithms open up new 
avenues in understanding MAX structures, compositions, and 
properties. It is crucial to explore the MAXs with unknown 
element compositions and new structures based on the ther-
modynamic stability principle.

5.1  Prediction Types of MAXs

Currently, high-precision computational methods are exten-
sively employed, including density functional theory for 
electronic structure calculations, Monte Carlo simulations, 
molecular dynamics simulations, phase field methods, and 
finite element analysis. With the continuous development of 
MAXs experimental research and theoretical foundations, a 
large amount of observation and simulation data has been 
obtained through these methods. By utilizing these extensive 
datasets, machine learning techniques have provided more 
accurate and efficient predictions for the new MAXs. The 
approach promises to greatly speed up the design process of 
new materials and shorten the time needed for materials to 
be converted from laboratory research to industrial applica-
tions. Through their training and optimization, machine learn-
ing models offer enhanced understanding and forecasting of 
MAXs’ performances and behaviors, marking a novel and 
efficient avenue for advancing materials science research and 
development.

This research methodically examined the MAXs’ struc-
tural stability, lattice parameters, mechanical characteristics, 
electronic properties, and thermal conductivity using den-
sity functional theory principles. These analyses provide a 
theoretical basis for identifying promising MAXs and have 
informed experimental synthesis efforts [209, 224–227]. In 
2021, Khaldi Alidusti et al. [228] utilized density functional 
theory to analyze 1122 MAX candidates and found that 466 
MAX and 26 MXene may be prepared. In 2023, Martin et al. 
[208] conducted a more detailed investigation into the phase 
stability of MAXs. Figure 7a shows the stability heat maps 
of the C-based MAX. The 3705 different MAXs, with vari-
ous combinations of M, A, and N, B, and P elements, were 
evaluated based on the stability and identified 180 ternary 
MAXs that were theoretically predicted to be stable but not 
synthesized in the laboratory. In 2022, Dahlqvist et al. [229] 
utilized DFT and PBE-parameterized GGA for insights into 
electronic exchange and correlation within MAXs (Fig. 7b). 
Notably, there are 23 thermodynamically stable i-MAX, 

with 9 already verified experimentally, and highlighted 
48 stable disordered solid solution MAXs (Fig. 7c). The 
synthesis and theoretical predictions of MAXs are counted 
(Fig. 7d), illustrating how the ordered or disordered nature 
is influenced by the size disparity between M- and A-site 
elements [210].

5.2  Functional Development of MAXs

Benefiting from ceramic and metal features and their char-
acteristics like low density, high modulus, excellent elec-
trical and thermal conductivity, thermal shock resistance, 
and resistance to high-temperature oxidation, MAXs dem-
onstrate exceptional potential for applications under extreme 
conditions such as high temperatures, severe corrosion, and 
radiation exposure. The diversity of MAXs, however, intro-
duces significant challenges in researching their properties, 
with the current lack of comprehensive and systematic stud-
ies hindering broader application. Through in-depth knowl-
edge of factors like composition, microstructure, crystal 
structure, and processing parameters, combined with ele-
ments’ physical and chemical properties, leveraging theo-
retical material science to create physical models and math-
ematical calculations enables effective prediction of MAXs’ 
performance parameters (Fig. 7e).

In 2016, Wang et  al. [230] employed density func-
tional theory-based first-principles calculations to thor-
oughly investigate the lattice structure, stability, elec-
tronic structure, and mechanical and thermal properties 
of  Ti3(SnxAl1−x)C2 solid solutions across varying Sn con-
centrations. Their research indicates that increasing Sn 
content minimally impacts the crystal structure, and these 
solid solutions behave as metallic, stable, and brittle mate-
rials both thermodynamically and mechanically. Notably, 
the maximum bulk modulus was observed at the Sn dop-
ing concentration of 0.75, and the maximum shear modu-
lus was observed at the Sn doping concentration of 0.5. 
Moreover, these solid solutions boast high melting points 
and Debye temperatures, with their lattice thermal conduc-
tivity at room temperature exceeding 40 W  m−1  K−1 for x 
values of 0, 0.25, and 0.5, indicating superior thermal con-
ductivity. In 2021, Ahams et al. [231] first applied DFT to 
analyze the structure, elasticity, and electronic properties 
of novel MAXs such as  (V0.25Zr0.75)2PbC,  (V0.5Zr0.5)2PbC, 
 (V0.75Zr0.25)2PbC, and  V2PbC and studied the effects of 
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Fig. 7  a Calculated stability for C-based MAX. Reproduced with 
permission from Ref. [208]. Copyright 2023, Elsevier. b Element 
distribution maps in predicted stable i-MAX and solid solution MAX 
series materials. Reproduced with permission from Ref. [229]. Copy-
right 2022, Royal Society of Chemistry. c Predicted phase stability 
for (M′2/3 M′′1/3)2AlC alloys. Reproduced with permission from Ref. 

[229]. Copyright 2022, Royal Society of Chemistry. d Statistical chart 
of stable MAX series materials formed from experimental implemen-
tation and theoretical prediction since 1960. Reproduced with permis-
sion from Ref. [229]. Copyright 2022, Royal Society of Chemistry. e 
MAXs calculation workflow diagram
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changes in V and Zr concentrations on the properties of 
 Zr2PbC. Their research revealed that the structural integ-
rity of these new MAXs remains stable within the  P63/
mmc space group as the V element ratio increases, with 
the 25% V-containing samples showing improved plastic-
ity, compressibility, brittleness, and hardness. Elastic con-
stants rose with higher V concentrations, and the atomic 
concentration also influenced the MAXs’ electronic band 
structure and total density of states (TDOS), offering cru-
cial insights for predicting and understanding the perfor-
mance of MAXs. In 2022, Zeng et al. [232] employed den-
sity functional theory (DFT) to explore the  Nb2AN (A = Si, 
Ge, Sn) MAXs compounds, focusing on their structure, 
mechanical attributes, electronic structure, and thermal 
behavior. The study revealed that these compounds not 
only maintain strong structures but also maintain dynamic 
mechanical stability. Notably, the  Nb2SnN phase stood out 
for its superior thermal shock resistance, even though it 
didn’t have the highest melting point among the group. 
Due to its thermal expansion coefficient in the temperature 
range of 300–1452 K being very close to that of nickel-
based alloys, coupled with the lowest lattice thermal con-
ductivity, it has become a promising candidate for thermal 
barrier coating (TBC) applications. The  Nb2SnN phase is 
distinguished by its mechanical resilience, attributed to the 
minimal deformation of its octahedral structure, high duc-
tility, and low anisotropy. Electronic analyses pinpointed 
the phase’s low Debye temperature Θ to its high ionic 
character and minimal covalency. Further extending the 
scope, in 2024, Tian et al. [233] delved into the impact of 
pressure on  V2ZnC’s crystal structure, elasticity, electronic 
framework, and thermodynamic steadiness through DFT 
investigations. They discovered that  V2ZnC transitions 
from brittleness to ductility at a pressure of 20 GPa, with 
its elastic constants and modulus escalating in response to 
increased pressure.

These findings underscore the pivotal role of theoretical 
computations in paving the way for novel materials, ena-
bling the anticipation of diverse material characteristics 
such as optical, magnetic, and electronic transport proper-
ties. Through advanced simulations, scientists gain deeper 
insights into materials’ band structures, Fermi levels, and 
electron density distributions, which facilitate predictions 
about their performance under specific conditions. These 

insights are invaluable to material developers, which guide 
the selection of material composition, synthesis methods, 
and processing parameters, thereby simplifying the creation 
and optimization of new materials.

6  Properties and Performances

MAXs demonstrate mechanical properties, thermal prop-
erties, electrical properties, magnetism, high-temperature 
oxidation resistance, and corrosion resistance, owing to 
their layered structure consisting of alternating M-X layers 
bonded by strong covalent bonds and M-A layers bonded 
by weak metal bonds, endowing them with high hardness, 
strength, toughness, and excellent electrical and thermal 
conductivity. This structure enables the material to maintain 
good mechanical and chemical stability even at high tem-
peratures. For specific application fields, the performance 
of MAXs can be further adjusted and optimized through 
methods such as alloying, nanomaterialization, and surface 
modification.

6.1  Mechanical Properties

MAXs exhibit a unique combination of mechanical advantages, 
including high strength, moderate hardness (4–6 GPa), excel-
lent fracture toughness (3–5 MPa  m1/2), superior wear resist-
ance, and exceptional thermal shock resistance. These perfor-
mances can be maintained even at high temperatures due to 
the stable layered crystal structure. The mechanical properties 
stem from the hybrid bonding, with strong covalent M-X bonds 
contributing to hardness and high-temperature stability, and 
metallic M-A bonds providing ductility. The layered structure 
also allows for self-lubrication and crack resistance, ensuring 
enhanced durability. This unique interplay of ceramic-like and 
metallic features gives MAXs a significant edge in demanding 
applications like aerospace, automotive, and energy systems. 
Table 2 summarizes the mechanical properties.

Typically, MAXs have a brittle-plastic transition tempera-
ture (BPTT), which is the transition temperature from typi-
cal brittle fracture (traditional ceramics) to fracture tough-
ness (metals). When the environment temperature is higher 
than BPTT, the bending strength rapidly decreases. As 
the temperature increases, the Young’s modulus of MAXs 
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decreases, but the high stiffness remains [66]. Thermal sta-
bility is also an important criterion. MAXs can sustain the 
structure integrity, and the strength increases upon quench-
ing in the air at 1300 °C. In addition, larger grain sizes can 
achieve higher thermal stability [244]. Attributed to the 
microplastic behavior and quasi-metallic damage tolerance 
(KBs) during quenching, MAXs can maintain excellent 
mechanical properties and thermal stability even in high-
temperature environments.

6.2  Thermal Properties

6.2.1  Thermal Conductivity

MAXs are good thermal conductors, with thermal con-
ductivities ranging from 12 to 60 W  m−1  K−1 at RT. The 
total thermal conductivity (κth) is determined by both the 

electronic thermal conductivity (κe) and the phonon thermal 
conductivity (κph). In general, for non-S- or Al-containing 
MAXs, the phonon thermal conductivity (κph) is lower than 
the electronic thermal conductivity (κe). However, MAX con-
taining S and Al is good phonon conductors; the κph value of 
 Ti3AlCN at RT is up to 36 W  m−1  K−1, the highest value in 
MAXs [245]. MAX ’ κph is related to their defect concentra-
tion, which can be evaluated by the residual resistance ratio 
(RRR). As the RRR value increases, the κph value increases 
[246]. However, the point defects and the rattler effect sup-
press the contribution of κph to the thermal conductivity in 
part of MAXs, which refers to the vibration atoms at their 
equilibrium positions leading to phonon scattering. Many 
elements, with atomic numbers > S, tend to "rattle," which 
explains why the phonon thermal conductivity of  Ti2InC, 
 Hf2InC,  Nb2SnC, and other compounds contributes less to 
the overall thermal conductivity.

Table 2  Mechanical properties of MAXs at RT

a The symbol * indicates that MAXs data have not yet been reported

MAX Phases Density [g  cm−3] Vickers hardness 
[GPa]

Young’s modu-
lus [GPa]

Flexural strength 
[MPa]

Compressive 
strength [MPa]

Fracture tough-
ness [MPa 
 m1/2]

211 phase
Ti2SC [234] 4.6 * 290 * * *
Ti2AlC [235] 4.1 5.8 ± 0.5 277 432 ± 12 952 ± 6 6.5 ± 0.2
Ti2SnC [236] 4.7 3.5 ± 0.4 * * * *
Ti2AlN [237] 4.3 * 285 * * *
Ti2AlC0.5N0.5 [237] 4.2 * 290 * * *
V2AlC [66] 4.0 2.2 ± 0.1 235 270 ± 12 527 ± 12 5.7 ± 0.2
Cr2AlC [67, 238] 5.17 4.9 282 469 ± 27 949 ± 22 6.2 ± 0.3
Cr2GeC [239] 5.2 * 208 * * *
Nb2AlC [69] 6.44 4.5 ± 0.3 294 481 ± 42 * 5.9 ± 0.3
Nb2SnC [236] 8.0 3.8 ± 0.2 216 * * *
Ta2AlC [70] 11.46 4.4 ± 0.1 292 360 ± 19 804 7.7 ± 0.2
Zr2SnC [236] 6.9 3.9 ± 0.3 178 * * *
Hf2SnC [236] 11.2 3.5 ± 0.4 237 * * *
312 phase
Ti3SiC2 [8] 4.5 4.0 320 260 ± 20 600 *
Ti3AlC2 [235] 4.21 2.7–3.2 297 340 760 6.9–7.2
Ti3GeC2 [240, 241] 5.22 5.0 340 * 1277 *
Ti3(Si,Ge)C2 [241] 5.02 * 322 * * *
Ti3AlCN [237] 4.5 * 330 * * *
413 phase
Nb4AlC3 [242] 6.97 2.6 ± 0.2 306 346 ± 38 515 ± 44 7.1 ± 0.3
Ta4AlC3 [243] 13.18 5.1 ± 0.1 324 372 ± 20 821 ± 97 7.7 ± 0.5
Ti4AlN3 [243] 4.6 2.5 310 ± 2 350 ± 15 475 ± 15 *



 Nano-Micro Lett.          (2025) 17:173   173  Page 20 of 42

https://doi.org/10.1007/s40820-025-01673-9© The authors

6.2.2  Heat Capacity and Thermal Expansion Coefficient

The heat capacity of MAXs depends on the following fac-
tors: temperature, chemical composition, crystal structure, 
and potential phase transitions. At low temperatures, the 
heat capacity increases nonlinearly, governed by the Debye 
model, while at high temperatures it approaches the classi-
cal limit (~ 3R per atom). At high temperatures, it tends to 
be constant, approaching the Dulong Petit limit. Variations 
in M, A, and X significantly influence phonon spectra and 
thus heat capacity. The layered structure results in unique 
lattice vibrations, with defects and doping further modify-
ing thermal properties. Despite metallic behavior, MAXs 
exhibit low electronic contributions to heat capacity, with 
phonons being dominant. These properties, combined 
with high thermal conductivity and stability, make MAXs 
suitable for high-temperature applications such as ther-
mal management, energy storage, aerospace, and nuclear 
systems [7, 8].

The coefficient of thermal expansion (CTE) describes 
the variation in volume with temperature. A low CTE can 
reduce internal stress caused by thermal expansion and 
contraction, thereby improving the thermal cycling stabil-
ity and service life. The thermal expansion behavior is ani-
sotropic due to the relatively weak interlayer bonds (MA 
or van der Waals forces) and relatively strong intra-layer 
bonds (MX). This unique bonding characteristic limits the 
thermal expansion of the lattice, allowing MAX to main-
tain stable volume in high-temperature environments and 
reduce the damage of thermal stress to the structure [8].

6.3  Electrical Properties

6.3.1  Resistivity

MAXs exhibit metallic conductivity because: (1) The high 
density of electronic states near the Fermi level provides a 
large number of conductive electrons. (2) The unique lay-
ered structure of MAX, alternating M-X layers and A lay-
ers, facilitates the free electron migration within the M-X 
layers, while reducing scattering and thereby enhancing 
conductivity. (3) The weak interlayer interactions result in 
lower electron scattering rates, thereby maintaining higher 
electron mobility. Meanwhile, the scattering effects of 

impurities, vacancies, or other defects may lead to a higher 
residual resistivity and a lower RRR at low temperatures. 
The solid solution MAXs show a higher resistivity than 
the corresponding MAXs due to the stronger scattering 
effect, leading to a decrease in electron mobility. Since 
N(EF) predominates in the d-orbitals of the solid solution 
elements, the impact of substitutions at different positions 
(M, A, X) on resistivity is not equal [247]. In addition, the 
morphology of MAX also affects resistivity, mainly due 
to different surface areas of MAX with different appear-
ances, with a larger specific surface area providing more 
surface area. During the contact process between electrons 
and external electrodes or other materials, it increases the 
contact points for electron transmission and improves con-
ductivity efficiency [248].

6.3.2  Superconductivity

Owing to the strong covalent and ionic bonding interactions, 
coupled with weaker metallic or van der Waals interactions, 
this structural characteristic enables electrons to maintain long-
range coherence at low temperatures, facilitating the forma-
tion of Cooper pairs, thereby promoting the frictionless flow 
of superconducting current, which is one of the fundamental 
principles of superconductivity. MAXs exhibit a higher den-
sity of electronic states near the Fermi level, which enhances 
electron–phonon coupling. The d-electron states of elements 
such as Ti, Mo, and Nb significantly contribute to supercon-
ductivity, such as the superconductivity of  Mo2GaC [249] and 
 Nb2SnC [250] which has been demonstrated. The introduction 
of C or N atoms provides additional electronic states, which 
promotes the formation of stable electron–phonon coupling 
systems, thereby improving superconductivity. Experiments 
have found that certain MAXs exhibit a superconducting 
transition within a specific low-temperature range, similar 
to the behavior of traditional superconductors. For instance, 
the superconducting transition temperature for  Mo2GaC is 
3.7–4.1 K [249], while  Nb2SC is below 5 K [250]. In addition, 
 Nb2SnC, at 7.8 K, exhibits a higher superconducting transition 
temperature [250].

6.4  Magnetic Properties

By introducing a magnetic element component into M- or 
A-site, MAXs can realize magnetic properties.  Cr2GeC is 



Nano-Micro Lett.          (2025) 17:173  Page 21 of 42   173 

antiferromagnetic [251];  (Cr1−xMnx)2GeC formed by par-
tially replacing Cr with Mn induces ferromagnetic polari-
zation. The average magnetic moment and Curie tempera-
ture increase with the increase in Mn doping content. The 
magnetic properties of  (Cr1−xMnx)2GeC depend on the con-
centration of Mn and the atomic configuration of Cr and 
Mn in the crystal lattice [252]. The competition outcome 
between ferromagnetic and antiferromagnetic states depends 
on the local chemical composition and the ordered state of 
the M sites, including (Cr,Mn)2AlC [253], (Cr,Mn)2GeC 
[252], (Cr,Mn)2GaC [113, 114], (Mo,Mn)2GaC [115], 
(V,Mn)3GaC2 [162],  Cr2AlC [67],  Cr2GeC [239], and 
 Mn2GaC [80].  (Mo2/3RE1/3)2AlC, a series of the magnetic 
i-MAXs, with RE standing for Ce, Pr, Nd, Sm, Gd, Tb, Dy, 
Ho, Er, Tm, and Lu, exhibit a special microstructure of 
quasi-two-dimensional magnetically frustrated triangular 
lattice layers covering the Mo honeycomb structure [42]. 
The introduction of A-site elements also provides a new 
pathway for the modulation of magnetic properties [38]. 
Fe, Ni, Co, and Mn with 3d electrons have been generally 
added into the A-site.  V2(AxSn1−x)C exhibits hysteresis lines 
with an "S" shape at low temperatures, and the saturation 
magnetization intensity gradually decreases with increasing 
temperature, which indicates that it is a typical soft magnetic 
material. This strong magnetic modulation that relies on ele-
ment combinations can precisely control the magnetism of 
MAXs.

6.5  High‑Temperature Oxidation Resistance

The oxidation resistance of MAX at high temperatures pri-
marily stems from the diffusion behavior of their specific 
metal elements, especially those containing Al elements. At 
high temperatures, the Al atoms tend to diffuse to the sur-
face, forming a dense  Al2O3 protective layer that effectively 
prevents oxygen penetration (as shown in Fig. 8a) [254]. 
However, the grain size of MAXs significantly affects the 
diffusion rate of the Al element. For  Ti2AlC with small grain 
size, Al atoms can quickly diffuse to the surface of the grain 
and uniformly form an  Al2O3 protective layer. On the con-
trary, for  Ti2AlC with large grain sizes, Al atoms are difficult 
to precipitate inside the grain and form a continuous  Al2O3 
protective layer, resulting in weaker oxidation resistance. 
Additionally, when large grain  Ti2AlC precipitates Al at 
high temperatures, the matrix does not directly transform 
into TiC, but instead forms a sandwich structure of  Ti3AlC2 
and TiC. This transformation is accompanied by volume 
contraction, leading to surface cracks that facilitate oxygen 
infiltration, thus significantly reducing oxidation resistance 
[255]. Replacing Al with low melting point elements (such 
as Sn) can lower the temperature of crack healing caused 
by oxidation, as the oxidation reaction temperature of Sn is 
lower than that of Al. Specifically,  SnO2 can form at 460 °C, 
whereas  Al2O3 requires 900 °C. The high diffusivity and flu-
idity of Sn facilitate crack repair through oxidation reactions 

Fig. 8  a SEM image of the cross section of  Ti3AlC2 after oxidation at 800 °C Reproduced with permission from Ref. [254]. Copyright 2019 
The American Ceramic Society. b SEM image of  Ti3Al0.8Sn0.2C2 after oxidation at 850 °C for 30 h. Reproduced with permission from Ref. 
[254]. Copyright 2019 The American Ceramic Society. c Schematic representation of oxide scale rumpling/buckling, blistering, and subsequent 
breakaway oxidation. Reproduced with permission from Ref. [257]. Copyright 2019 Elsevier Ltd
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[256]. Nevertheless, these properties can also lead to the 
diffusion of Sn to the sample surface, promoting the growth 
of unprotected  SnO2. Moreover, the small Al/Ti atom’s ratio 
promotes the growth of a non-protective rutile-TiO2 scale 
(as illustrated in Fig. 8b), which in turn affects the alloy’s 
oxidation resistance [254].

Surface roughness also has a significant impact on oxida-
tion resistance. A rough surface increases stress concentra-
tion points, making the  Al2O3 protective layer more suscep-
tible to thermal stress during the initial stages of oxidation, 
resulting in uneven distribution of stress and the phenom-
enon of rumpling. Wrinkles can exacerbate the accumulation 
of compressive stress, causing unstable deformation of the 
oxide layer in these high stress areas, gradually forming a 
bubble structure. The irregular morphology of the rough 
surface makes these bubble structures more likely to form. 
When bubbles burst under external stress or mechanical dis-
turbance, the exposed matrix in the rough area becomes a 
pathway for oxygen, accelerating the infiltration of oxygen 
and leading to the formation of a porous mixed oxide layer 
(as shown in Fig. 8c) [257].

6.6  Corrosion Resistance

The A element can form a stable oxide or nitride protec-
tive layer in the corrosive environment, such as aluminum 
forming an alumina layer and silicon forming a silica layer, 
which effectively isolates the corrosive medium. In addi-
tion, MAXs have a high melting point and excellent thermal 
stability allowing them to maintain their structural integ-
rity at high temperatures and are not susceptible to thermal 
decomposition or phase transformation. However, corrosion 
remains a key factor limiting their long-term use and reli-
ability. In acidic and alkaline environments, MAXs show 
ceramic material properties with good corrosion resist-
ance, which is mainly related to the elemental composi-
tion, whether the M/A element reacts chemically with acid 
and alkali, and in addition, whether the surface passivation 
layer can be formed quickly or not, which also determines 
the corrosion resistance of MAXs in acidic and alkaline 
environments. It was shown that  Ti3SiC2 is very stable in 
NaOH, HCl, and  H2SO4 concentrated/dilute solutions with 
negligible mass loss (< 2 �m  yr−1) over six months. The 
corrosion rates in dilute HF and concentrated  HNO3 were 

5 and 13 mm/yr, respectively. However, in the dilute  HNO3 
solution, the corrosion rate was as high as 250–320 mm  yr−1, 
which was mainly due to the dissolution of Ti elements into 
the corrosive medium, leaving behind a Si-rich layer that 
was oxidized to  SiO2 in  HNO3 [258]. Cyclic polarization 
and chrono-current tests in HCl and  H2SO4 dilute solutions 
showed that an irreversible electrically insulating layer was 
generated on the surface of  Ti3SiC2, and this protective 
film may be responsible for its corrosion resistance. Due to 
the complex Lewis acid reaction at high temperatures, dis-
solved A-site elements diffuse into the atomic layer toward 
the inward molten salt and fluoride salt, resulting in poor 
corrosion resistance of MAXs in molten salt and fluoride 
salt environments [259].

7  Functional Applications

MAXs, due to their unique layered structure, combine the 
advantages of metals and ceramics and have excellent high-
temperature resistance, oxidation resistance, thermal shock 
resistance, mechanical strength, and electrical conductivity, 
providing support for technological progress and innovation 
in fields such as aerospace, automotive, electronics, energy, 
and chemical engineering, as shown in Fig. 9.

Fig. 9  Properties and applications of MAX series materials
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7.1  Powders of MAXs

Powder materials exhibit significant advantages in processing 
flexibility, material performance improvement, rapid reactivity, 
lightweight and high strength, and microstructure controllabil-
ity. In addition, the physical and chemical properties of powder 
MAXs can be regulated and controlled by adjusting the parti-
cle size and morphology, thereby improving their functional 
performance. Therefore, powder MAXs are widely utilized in 
fields such as electromagnetic shielding and absorption, energy 
storage and conversion, composite material construction, cata-
lytic reaction regulation, and 3D printing materials.

7.1.1  Electromagnetic Interference

Electromagnetic pollution generated by mobile phones, 
antennas, and security devices also harms human health. 
Therefore, there is an urgent need to develop high-per-
formance shielding and absorbing materials for electro-
magnetic protection or electromagnetic compatibility 
management of electronic components in both military 
and civilian electromagnetic interference management. 
MAXs exhibit unique advantages in electromagnetic 
interference shielding and absorption due to their layered 
structure, band structure, electronic properties, controlled 
planar structure, and a wide range of element composition 
choices.

The EMI performance of MAX powders exhibits signifi-
cant microstructure dependence [260]. When the particle 
size of MAX powders decreases, the number of particles 
per unit volume increases, and the average distance δ 
between particles decreases, which helps to form a more 
effective conductive network and promote absorption per-
formance [14]. In addition, as the amount of MAX pow-
ders increases, the free electron density and electron trans-
fer efficiency increase, resulting in enhanced dielectric 
loss, reduced reflection loss, and thus improved absorp-
tion performance. Future research focuses on how to real-
ize the geometric configuration design via the structure 
orientation control technology and composite material 
construction methods. To understand the electromagnetic 
interference shielding mechanism of MAX enables the 
enhancement of EMI performance. In addition, the hol-
low rod-shaped MAX phase exhibits excellent microwave 
absorption performance due to its unique microstructure, 

which facilitates impedance matching and dielectric loss 
[261].

7.1.2  Electrochemical Energy Storage

Based on the fully adjustable physicochemical properties 
induced by the multi-element composition and layered struc-
ture of MAX powder, it exhibits potential as a functional 
material for electrochemical energy storage electrodes. 
Due to its layered structure, the large theoretical capacity 
of A-site atoms, and good conductivity, it was once highly 
anticipated as an anode material [262]. Still, its performance 
did not meet expectations. Recent studies have revealed that 
the layered structure advantage of micron-sized (or larger) 
MAX particles, coupled with the inability of A-site elements 
with high specific capacity to function, significantly reduces 
electrochemical performance. According to theoretical cal-
culations and experimental results, reducing particle size can 
effectively harness the advantages of the MAX and enhance 
its energy storage performance [263, 264]. Compared to tra-
ditional electrochemical electrode materials, MAX particles 
exhibit a higher density and stable lattice valence bond rela-
tionships, which makes it challenging for electrolyte ions to 
migrate and transform the valence bonds of MAXs under 
potential fields. Additionally, MAX particles are predomi-
nantly prepared using a top-down method, making it difficult 
to obtain nanoscale ultrafine particles. This results in the 
inability of active elements inside the particles to contribute 
to reaction charges. Therefore, the development of nanoscale 
MAX powder particle preparation technology is crucial [16, 
17].

7.1.3  Catalysis

MAX powder materials can provide a larger specific surface 
area, allowing more constituent metals M to participate in 
catalytic reactions and promote reaction rates. In addition, 
the ceramic properties exhibited by MAXs enable them to 
maintain catalytic activity even in high-temperature and cor-
rosive environments. The rich elemental composition and 
structure of MAX also provide a foundation for the regu-
lation of catalytic function. The  Cr2AlC MAX phase as a 
catalyst has significant advantages in catalyzing wet per-
oxide oxidation (CWPO), including significantly reducing 
the generation of carbon monoxide (CO), excellent chemical 
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stability, and reusability [265]. Its unique surface structure 
and lower metal leaching further enhance the environmental 
friendliness of the catalyst. MAX catalysts can also improve 
hydrogen storage performance; adding 7 wt%  Ti3AlC2 to 
 MgH2 can lower the dehydrogenation starting temperature 
to 205 °C [266]. Meanwhile, the apparent activation energy 
(104.7 kJ   mol−1) of  MgH2 sample with 7 wt%  Ti3AlC2 
addition was significantly lower than that of the original 
 MgH2 sample (50.4 kJ  mol−1). The high catalytic activity 
of  Ti3AlC2 is attributed to the ability of H atoms to bind to 
the interstitial positions of the Ti–Al layer.

7.1.4  Composite Material Reinforcing Agents

Based on the synergy of properties and functions, MAX 
powders are utilized as additives in composite materials to 
enhance various mechanical properties, including strength, 
high-temperature resistance, and corrosion resistance. 
Metal-based composites incorporating MAX powder exhibit 
not only high strength, modulus, and hardness but also dem-
onstrate excellent machinability, friction, and wear resist-
ance, as well as significant damping capacity. There exists a 
certain contradiction between the mechanical properties and 
damping capacity of composite materials [267, 268]. Spe-
cifically, while the addition of hard and brittle dispersed par-
ticles (such as SiC) can enhance the mechanical properties 
of composites, it can also pin dislocation movement, thereby 
affecting damping performance. Therefore, it is proposed 
that by replacing traditional hard and brittle reinforcements 
with MAX powders possessing plastic deformation and high 
toughness, the pinning effect on dislocation movement can 
be minimized, thus achieving a synergistic enhancement of 
both strength and damping capacity [269].

7.1.5  Precursor of MXene

The geometric structure (particle size, morphology) of MAX 
powder materials directly affects the preparation method of 
MXene and the morphology of the obtained MXene materi-
als. In addition, the M-A/M-X bond energy of MAXs also 
determines the difficulty of MXene etching. The smaller 
grain size of the MAX usually has a larger specific surface 
area, which helps accelerate the acid etching reaction and 
accelerate the synthesis process of MXene. The obtained 
MXene has richer active sites and a larger specific surface 

area, which can enable MXene to exhibit higher reaction 
activity and efficiency in catalysis, sensing, and energy stor-
age [270]. Large-sized MAX grains typically contribute to 
the formation of a uniform MXene layer structure while 
maintaining more consistent surface properties and higher 
electrochemical conductivity [271, 272]. In addition, larger-
sized MXene can provide higher mechanical strength [273]. 
Therefore, regulating the grain/particle size of MAX is key 
to optimizing the preparation and functionality of MXene. 
Exploring new MAXs, guiding the control of the geometric 
structure and valence bond relationships of MAX powder 
materials, and developing environmentally friendly MXene 
synthesis methods are the foundation for promoting the com-
mercial application of MXene materials.

Although MAX powder materials have demonstrated 
potential applications in various fields owing to their unique 
physical and chemical properties, reducing preparation costs, 
controlling uniformity, and improving surface stability are 
serious challenges for large-scale applications. Therefore, 
developing MAX powder materials with unique geometric 
shapes, adjusting the surface and interface properties of 
MAX powder, optimizing the interface bonding strength 
with the matrix material, and comprehensively improving 
the functional performance of MAX powder materials are 
crucial for the application of MAX in specific environments.

7.2  Bulk of MAXs

Bulk materials exhibit a denser overall morphology, typi-
cally possessing higher mechanical strength, hardness, and 
toughness, capable of withstanding greater external impact 
or compression. Usually, traditional mechanical process-
ing such as cutting, drilling, and forging, can be used to 
shape and structure them, making it easier to manufacture 
complex structural components. Due to the continuity of 
its internal structure, it can form a complete electronic con-
duction path, usually with good thermal and electrical con-
ductivity, excellent thermal stability, oxidation resistance, 
and electrical conductivity. In a radiation environment, bulk 
materials can more effectively resist high-energy radiation 
(such as neutrons, electrons, ions, X-rays, and gamma rays) 
due to their dense structure and layered crystal arrange-
ment. These advantages make bulk MAXs widely used in 
important fields such as mechanical structural components, 
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building materials, electronic components, etc. that require 
high mechanical strength and stability.

7.2.1  High‑Temperature Structural Materials

MAX bulk materials exhibit excellent high-temperature 
stability, oxidation resistance, corrosion resistance, and 
self-healing properties under high and rapid tempera-
ture changes, which are used in the aerospace industry 
for gas turbine blades, aircraft engine components, and 
spacecraft insulation layers. MAX can increase the maxi-
mum operating temperature by 200 °C [274]. Moreover, 
MAX shows a good CTE match with standard TBC and 
thermal growth oxide (TGO) material at high tempera-
tures, which reduces its thermal stress, thereby extend-
ing the service life [10, 220]. In the nuclear industry, 
MAXs are utilized in fourth-generation nuclear reactor 
components and nuclear fuel cladding materials, owing 
to their radiation resistance, creep resistance, and self-
healing capabilities [275, 276]. The high thermal con-
ductivity and high-temperature resistance of MAX are 
harnessed in heat exchangers for gas turbine components 
and solar thermal power generation systems [277]. Fur-
thermore, MAX material serves as a corrosion-resistant 
reactor liner, high-temperature corrosion-resistant pipe-
line material, high-temperature furnace lining, and molten 
metal processing equipment, due to its corrosion resist-
ance, oxidation resistance, and wear resistance at extreme 
temperatures [13, 278, 279]. The MAX bulk material 
exhibits high conductivity and a low thermal expansion 
coefficient, rendering it ideal for high-temperature elec-
trode materials and electromagnetic shielding materials 
[13, 264, 280]. Leveraging its high-temperature creep 
resistance, MAX bulk material is also suitable for wear-
resistant components of engines and thermal management 
systems of electric vehicles [281]. As manufacturing tech-
nology evolves, MAX bulk materials are poised to play 
an increasingly significant role in these fields that require 
high temperature, corrosion, and high strength.

7.2.2  Electrical Contact Materials

The primary function of electrical contacts is to establish 
reliable contact points within the circuit, ensuring efficient 
current conduction while enduring extreme conditions such 

as wear, corrosion, and arcing during operation. MAXs are 
renowned for their exceptional conductivity, wear resistance, 
corrosion resistance, and high-temperature stability. These 
attributes render MAXs highly effective in high-current and 
high-frequency applications, particularly during frequent 
switching and contact separation processes. They effectively 
minimize arc and contact point wear, thereby prolonging 
equipment lifespan. Furthermore, the antioxidant properties 
of MAXs ensure stable electrical contact performance in 
harsh environments, such as humidity and corrosive gases 
[12, 282]. Notably, silver-based electrical contact compos-
ite materials containing 10%  Ti3AlC2 (by volume) exhibit 
performance comparable to commercial AgCdO compos-
ite materials [11, 283–285]. Additionally, incorporating 
 Ti3AlC2 MAX significantly enhances the welding resistance 
and simplifies the processing of electrical contact materials. 
The pursuit of non-toxic, high-performance electrical con-
tact materials has emerged as a focal point in this field [286].

7.2.3  Connecting Materials

Connecting materials are used to bond two or more compo-
nents together. MAX bulk materials can provide stronger 
mechanical properties and thermal stability when connecting 
complex ceramic, composite materials, and metal compo-
nents, especially exhibiting significant advantages in high 
temperatures and harsh environments. By solid-state diffu-
sion,  Ti3SiC2 MAX bulk can bond to  Ti3AlC2 directly [287]. 
During the bonding process of  Ti3SiC2 and  Ti3AlC2, it was 
found that Si and Al undergo mutual diffusion, forming a 
 Ti3(Si1−xAlx)C2 solid solution in a pulse current sintering 
furnace using the rapid current heating method, without the 
need for any filler compounds or welding agents [288]. It 
provides a new possibility to seal nuclear fuel cladding tubes 
onto MAXs.

Despite their excellent mechanical properties, the bulk 
MAX still exhibits brittleness under certain conditions, par-
ticularly in stress concentration points or high-impact envi-
ronments. While the bulk MAX demonstrates good thermal 
stability at high temperatures, it still faces oxidation issues 
in extremely high-temperature environments. Long-term 
exposure to such environments may lead to performance 
degradation; therefore, there is an urgent need to improve 
their antioxidant properties. Additionally, the insufficient 
interfacial bonding strength between the bulk MAX and 
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other materials during the preparation of composite materi-
als could potentially diminish the mechanical properties of 
the composites. Furthermore, the bulk MAX encounters dif-
ficulties in cutting and forming during processing, especially 
when manufacturing complex-shaped components, resulting 
in relatively high production costs and potentially limiting 
their promotion in certain low-cost applications. To address 
these issues, future research could concentrate on enhanc-
ing the antioxidant properties of the materials, strengthening 
interfacial bonding, and developing more efficient process-
ing technologies, thereby expanding the application areas 
of the bulk MAX.

7.3  Film of MAXs

MAX films combine the small particle characteristics of 
powders and the continuity characteristics of bulks in two 
dimensions. The self-lubricating, mechanical properties, 
conductivity, and thermal conductivity make MAX thin 
films represent the application potential in electronics and 
electrical engineering. Moreover, MAX thin films exhibit 
extremely high thermal stability and oxidation resistance 
under high-temperature conditions, making them highly 
durable in corrosive and radiation environments. The depo-
sition of MAX on various substrate materials through physi-
cal vapor deposition (PVD) and chemical vapor deposition 
(CVD) has promoted the development of a new generation 
of high-performance materials.

7.3.1  Friction‑Reducing Lubrication Coating

Although pure metal coatings are widely used in various 
industries, their weak atomic bonding forces render them 
susceptible to wear and corrosion in frictional and chemi-
cal environments. Moreover, they tend to oxidize in high 
temperatures and corrosive media, thereby diminishing their 
performance. In contrast, MAX thin film materials exhibit 
exceptional wear resistance and corrosion resistance, owing 
to their unique layered structure and strong covalent bond-
ing. The M-A-X bonding endows the material with high 
hardness and friction resistance, while its chemical stabil-
ity maintains its structural integrity in acidic and alkaline 
environments. MAXs retain excellent oxidation resistance 
even at high temperatures. Therefore, when combined with 
metals, they significantly enhance the wear and corrosion 

resistance of coatings, offering more reliable protection and 
extending the service life of coatings under harsh conditions. 
Jamshidi et al. [289] explored the tribological and corrosion 
behavior of Al/Ti3SiC2 composite coatings and discovered 
that Al-MAX composite coatings exhibit higher corrosion 
potential and lower corrosion current density compared to 
pure aluminum coatings. Additionally, the dense oxide film 
formed by the MAX not only enhances the surface friction 
reduction performance of the coating but also prevents exter-
nal material erosion in certain high-temperature extreme 
environments, significantly broadening the application range 
and service environment of this type of composite coating.

MAX films are superior to traditional graphite in terms 
of self-lubricating performance, thermal conductivity, and 
high-temperature oxidation resistance, making them signifi-
cantly advantageous as friction lubrication components in 
extreme environments such as strong acids, strong bases, 
and high temperatures [290, 291]. Shi et al. [292] studied 
the tribological behavior of NiAI-Ti3SiC2-MoS2 composite 
materials and found that  MoS2 +  Ti3SiC2/NiAl-based com-
posite lubricating materials achieved good synergistic lubri-
cation in a wide temperature range from room temperature to 
800 °C. The friction coefficient at 400 °C was only 0.13, and 
the lubrication effect was supported by a friction film com-
posed of oxide film.  MoS2 had the main lubrication effect 
at medium and low temperatures, while the MAX provided 
a lubrication effect at high temperatures. This type of com-
posite material is expected to perform well in continuous 
heating environments and is a promising wear-resistant and 
high-temperature application material. The research results 
of Zhou et al. [293] show that an increased MAX content 
can improve the anti-friction performance of composite 
coatings. In addition, due to the introduction of MAX, the 
 Al2O3 oxide film generated on the surface of the coating at 
high temperatures not only improves the surface anti-friction 
performance but also enhances the high-temperature oxida-
tion resistance of the coating.

7.3.2  High‑Temperature Protective Coating

High-temperature protective coatings play a crucial role 
in various fields, including aerospace, energy, chemical, 
automotive, and electronics. Compared to traditional coat-
ings, MAXs demonstrate exceptional thermal stability and 
oxidation resistance at elevated temperatures. Additionally, 
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their superior thermal conductivity and self-lubricating 
properties enable them to effectively reduce friction under 
extreme operating conditions, thereby significantly enhanc-
ing the durability and reliability of the coatings [294, 295]. 
The composite oxides formed by the oxidation of metal ele-
ments in the coating at high temperatures, such as  TiO2 and 
 Al2O3, can effectively enhance the bonding strength between 
the coating and the substrate. Especially after the formation 
of multi-layer structures, the interface bonding between the 
coating and the substrate becomes even more compact [2]. 
MAX coating films serve as a protective coating for refrac-
tory alloys and a bonding coating in thermal barrier coat-
ings (TBC) systems. The coefficient of thermal expansion 
is crucial for reducing stress and avoiding coating peeling. 
Specifically, the CTE of  Cr2AlC (12.0–13.3 ×  10–6   K−1) 
is relatively high, making it suitable for protective layers 
in metal systems. The thermal expansion coefficients of 
 Ti2AlC and  Ti3AlC2 are relatively low, ranging from 8.2 to 
9.0 ×  10–6  K−1, and they exhibit better thermal expansion 
matching with TBC compounds, making them more suit-
able for use as bonding layers in thermal barrier coatings 
[274, 296, 297].

7.3.3  Nuclear Protective Coating

MAX, with excellent radiation resistance, oxidation resist-
ance, corrosion resistance, strong mechanical properties, and 
chemical stability, is regarded as potential accident-tolerant 
fuel (ATF) cladding candidate materials for third-generation 
light water reactors (LWRs) and future fourth-generation 
fission devices [275, 298, 299]. The neutron irradiation 
activity of MAX, including  Ti3SiC2,  Ti3AlC2, and  Ti2AlC, 
is comparable to that of SiC materials and is three orders of 
magnitude lower than that of Alloy 617 nickel-based alloys 
[300, 301].

V2AlC coating exhibits a unique gradient structure along 
its growth direction. In the region close to the substrate sur-
face, the grains are smaller with more interfaces, whereas 
in the region farther from the substrate surface, the grains 
gradually grow larger. This gradient distribution effectively 
suppresses the excessive aggregation and growth of helium 
bubbles, thereby enhancing the protective performance of 
the coating [302].  Ti3AlC2 and  Ti3SiC2 demonstrate remark-
able radiation tolerance upon exposure to high-energy ions 
like Xe and Kr. Despite being irradiated at high doses, such 

as 25–30 dpa (displacement per atom), they retain their crys-
tal structure and exhibit rapid self-healing capabilities [303]. 
 Ti3AlC2 demonstrates a stronger resilience against radiation 
damage, exhibiting excellent radiation resistance at both low 
(50 K) and room temperature (300 K) conditions. Although 
 Ti3SiC2 also exhibits high radiation resistance, it tends to 
undergo amorphization at higher doses. This amorphization 
primarily stems from the weaker bonding of Si–C bonds, 
whereas the Ti–Al and Ti–C bonds in  Ti3AlC2 are more 
stable, enabling them to withstand radiation damage and 
recover swiftly. Additionally, both  Ti3AlC2 and  Ti3SiC2 con-
sist of elements with low atomic number (Z), ensuring they 
do not significantly activate radioactivity under prolonged 
radiation, which is crucial in nuclear protective materials.

7.3.4  Metal Plate Protective Coating

Metal plates are extensively utilized in various fields, such as 
electrochemistry, corrosion protection, aerospace, and more, 
owing to their optimized current distribution, enhanced reac-
tion efficiency, and superior corrosion resistance. Introduc-
ing coatings can enhance their durability, corrosion resist-
ance, and stability in high-temperature and high-pressure 
environments, thereby ensuring reliable performance under 
various extreme conditions. It is crucial to screen coating 
materials with exceptional corrosion resistance, strength, 
and stability suitable for extreme environments. Compared 
to commonly used coating materials such as metals, poly-
mers, and ceramics, MAX films exhibit excellent corrosion 
resistance, good conductivity thermal conductivity, and 
flexible machinability. The MAX film coatings on the sur-
face of metal bipolar plates can significantly improve their 
corrosion resistance and conductivity, presenting consider-
able application prospects in commercial fuel cells [304]. 
The MAX film coating exhibits extremely low interfacial 
contact resistance (ICR) and demonstrates excellent cor-
rosion resistance and durability [305]. In the future, it is 
necessary to further improve the chemical bonding force 
and mechanical anchoring effect between the coating and 
the substrate, such as nitriding or the introduction of transi-
tion layers and gradient composite layers. By controlling 
the changes in composition and structure, gradual transition 
can be achieved, reducing stress concentration between the 
coating and the substrate, thereby enhancing the bonding 
force between the interface, breaking through the interface 
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bonding between MAX coating and substrate materials, con-
structing integrated electrode materials, and optimizing their 
functionality.

7.3.5  Electrical Contact Coating

Contact materials play a pivotal role in electrical contact 
materials, directly influencing the operational reliability 
and service life of equipment. Although pure copper has 
excellent conductivity and thermal conductivity, its weld-
ing resistance is limited. During the surface melting process 
triggered by arc discharge and Joule heating, the contacts 
tend to bond, making separation challenging, which in turn 
compromises the equipment’s disconnection capability. Cur-
rently, copper alloys, copper-based composite materials, and 
copper–ceramic composite materials are widely used as new 
electrical contact materials, particularly in applications such 
as pantograph slides, high-voltage switch contacts, and 
conductive slip rings. MAX films possess strong oxidation 
resistance, allowing them to maintain performance in high-
temperature oxidation environments. These characteristics 
enable MAXs to provide long-term reliable performance 
under harsh working conditions. Furthermore, the layered 
structure endows them with exceptional mechanical strength 
and toughness, enhancing their durability underwear and 
impact conditions, particularly suitable for electrical contact 
applications involving repeated insertion and high-frequency 
operations. For instance,  Ti2AlN [306],  Ti3SiC2 [307], and 
a series of MAX [308] are sputtered on n-type GaN, SiC, or 
Cu substrates and demonstrate a low ohmic contact resistiv-
ity. The deposited MAX film coating serves as an oxygen 
barrier, preventing potential oxidation, contamination, or the 
need for any cleaning steps, thereby enhancing the long-term 
stability of the device. MAX film coating exhibits a higher 
thermal capacity and a lower thermal conductivity. Under 
the influence of an arc, the pure metal coating undergoes 
significant melting and recrystallization, whereas the com-
posite MAX film coating remains largely unaffected, indi-
cating that MAX film coatings have the potential to serve as 
protective materials for electrical contact surfaces.

In order to better apply MAX  film to practice, 
the advanced synthesis and characterization technology 
should be applied to achieve the accurate control of the com-
position, geometric structure, density, uniformity and inter-
face strength of MAX film, so as to improve its functional 

performance in new energy, sensors, optoelectronic devices, 
self-healing, and strain response functions.

MAXs have demonstrated significant application potential 
in multiple fields due to their unique physical and chemical 
properties. Their conductivity and high surface area make 
them excellent in lithium-ion batteries and supercapacitors. 
Their high melting point, excellent mechanical properties, 
and oxidation resistance make them suitable for high-tem-
perature structural materials, such as aerospace and turbine 
components. Corrosion resistance and self-healing proper-
ties apply to protective coatings and wear-resistant materials. 
Thoroughly studying the microstructure and performance 
characteristics of MAXs is key to understanding their struc-
ture–activity relationship and driving behavior. Specifically, 
through in-depth analysis of the crystal structure, defect dis-
tribution, interface behavior, and stress–strain relationship of 
MAXs, the mechanism of performance changes in different 
environments can be revealed. This not only helps optimize 
the design of materials, but also guides their performance 
prediction and reliability evaluation in practical applications. 
Optimizing the preparation process to achieve mass produc-
tion and cost control is the key to large-scale applications. 
By improving synthesis parameters and increasing yield, 
costs can be reduced and economics can be improved. In 
the future, MAXs are expected to be widely applied in the 
fields of energy, aerospace, and environmental protection, 
promoting the development of related industries. Despite 
facing challenges, continuous research and technological 
advancements will enable MAXs to achieve widespread 
applications soon.

8  Conclusions and Perspectives

This review comprehensively explores the development 
trajectory, elemental composition, crystalline structure, 
preparation techniques, formation mechanisms and com-
putational simulation advancements, physical and chemi-
cal properties, and applications of MAX series materials. 
It provides a thorough and accessible guide for researchers 
in the MAX domain to comprehend the latest developments 
in preparation technologies, structural decipherment, and 
functional innovation within MAX series materials. MAX 
series materials still face unresolved challenges that hinder 
their widespread applications:
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(1)  How to construct a machine learning system to support 
MAX innovation research?

  Gathering data on the chemical compositions, struc-
tures, and both physical and chemical properties of 
known MAX series materials and merging this with 
current experimental practices, computational mod-
eling, machine learning, and deep learning can aid sci-
entists and engineers in predicting structure stability 
and performance under extreme environments. This 
may minimize the experimental scope, and acceler-
ate the development of MAX series materials through 
computational insights and empirical validations. By 
integrating expertise from materials science, computer 
science, chemistry, and physics, data sample collec-
tion is quickly enriched, and the machine learning sys-
tems are updated and refactored. The vision is to create 
an AI-driven autonomous system for MAX creation, 
incorporating robotics for synthesis and characteriza-
tion, and AI for interpreting results and suggesting new 
experiments, thus achieving a fully automated innova-
tion cycle for MAX series materials.

(2)  How to address scientific and rational control synthesis 
of MAX series materials?

  To answer this issue, the exploration of the reac-
tion mechanism is the foundation; in situ characteriza-
tion may be a key to addressing how to control purity, 
density, geometrical morphology, and microstructure. 
In our opinion, the precision preparation should be 
transformed from solid-phase sintering into molten 
salt-assisted and vapor deposition. However, to our 
knowledge, most production enterprises of MAX 
series materials are using a solid-phase sintering strat-
egy, which makes it difficult to control nucleation and 
growth processes based on interfacial atomic diffusion 
by solid interfaces. High temperature and high pressure 
can accelerate diffusion dynamics; however, it leads 
an unavoidable energy consumption. The preparation 
strategies of pressureless, low-temperature sinter-
ing based on solid-phase reactions, and cost-effective 
molten salt processes should be pushed into mass pro-
duction as soon as possible. Moreover, the vapor depo-
sition technology should be promoted for use in high-
end manufacturing, aviation, and military industries, 
which are not subject to cost control. The synthesis of 
MAX series materials via aqueous solution reaction is 
expected.

(3)  How to establish an industrial ecosystem for MAX 
series materials, leading to their practical application?

  Creating an industrial ecosystem for MAX series 
materials hinges on recognizing and integrating their 
unique attributes into existing industrial workflows, 
overcoming challenges in synthesis, property exploita-
tion, and identifying new application domains. In aero-
space, MAX series materials can endure extreme tem-
peratures, which are the ideal components in engines 
and spacecraft. Their resistance to wear and corro-
sion also suits for protective coatings in space launch 
vehicles and marine engineering. How to discover the 
unique characteristics of MAX series materials, the 
indispensable properties in specific application sce-
narios can form competitiveness in a variety of func-
tional materials. It is an important option to develop 
the functional applications of MAX series materials 
in aerospace and deep-sea exploration. In addition, the 
balance of function and cost is also a key parameter that 
limits practical applications.

  As a multi-element material system, how to design 
the atomic architecture and micro-geometry of MAX 
series materials is the basis for regulating its proper-
ties and functions. The development of new preparation 
technology is the premise of realizing its large-scale 
application. Navigating the innovation investigations 
by cross-disciplinary may unlock a new era of MAX 
series materials.
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