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HIGHLIGHTS

• A novel optoelectronic synapse compatible with existing chip technology is demonstrated. This device excels in mimicking memory 
and learning functions using light, making it ideal for future neuromorphic computing in biomedicine.

• Our design surpasses previous models with its ability to switch between short-term and long-term memory states using light pulses.

• Experiments on real-world biomedical data (electroencephalogram, electromyography, electrocardiogram) showed significant improve-
ment in classification accuracy. This highlights the device’s potential for advanced physiological signal processing and wearable 
health monitoring systems.

ABSTRACT The emergence of the Internet-of-Things is anticipated to cre-
ate a vast market for what are known as smart edge devices, opening 
numerous opportunities across countless domains, including personal-
ized healthcare and advanced robotics. Leveraging 3D integration, edge 
devices can achieve unprecedented miniaturization while simultaneously 
boosting processing power and minimizing energy consumption. Here, we 
demonstrate a back-end-of-line compatible optoelectronic synapse with a 
transfer learning method on health care applications, including electroen-
cephalogram (EEG)-based seizure prediction, electromyography (EMG)-
based gesture recognition, and electrocardiogram (ECG)-based arrhythmia 
detection. With experiments on three biomedical datasets, we observe the classification accuracy improvement for the pretrained model 
with 2.93% on EEG, 4.90% on ECG, and 7.92% on EMG, respectively. The optical programming property of the device enables an ultra-
low power (2.8 ×  10−13 J) fine-tuning process and offers solutions for patient-specific issues in edge computing scenarios. Moreover, the 
device exhibits impressive light-sensitive characteristics that enable a range of light-triggered synaptic functions, making it promising for 
neuromorphic vision application. To display the benefits of these intricate synaptic properties, a 5 × 5 optoelectronic synapse array is devel-
oped, effectively simulating human visual perception and memory functions. The proposed flexible optoelectronic synapse holds immense 
potential for advancing the fields of neuromorphic physiological signal processing and artificial visual systems in wearable applications.
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1 Introduction

Conventional computing systems based on von Neumann 
architecture are struggling with significant challenges in 
terms of high-power consumption and limited information 
processing speed due to the physical separation of process-
ing and memory units [1]. The human brain, composed of 
roughly  1011 neurons connected by  1015 synapses, demon-
strates exceptional energy efficiency, fault tolerance, and 
information transmission capabilities, presenting critical 
obstacles for the development of next-generation neuromor-
phic architectures [2–5]. To mitigate the von Neumann bot-
tleneck issue in traditional computing systems, the memris-
tors [6, 7] have excellent capability for use in neuromorphic 
vision sensors because of that they exhibit great potential by 
integrating memory, optical sensing, and processing capabil-
ities into a single device [8]. Consequently, image preproc-
essing and computation in vision sensors can be efficiently 
executed at the edge, rather than in cloud server systems, 
resulting in significant reductions in data transfer, latency, 
and energy consumption [9, 10].

In the current era, artificial intelligence (AI) has greatly 
contributed to health monitoring and disease diagnosis by 
utilizing biomedical signals [11, 12]. With the rise of the 
internet of things (IoT), AI services are moving from the 
cloud towards edge computing. Edge computing is a decen-
tralized computing model that brings data processing closer 
to the data source, rather than relying on a centralized server 
or cloud-based location. Compared with cloud computing, 
edge computing faces considerable challenges due to large 
neural network (NN) parameters and hardware resource 
limitations [13, 14]. Edge computing applications require 
the effective and efficient integration of both software and 
hardware components [15–17]. In edge biomedical applica-
tions, a universal model usually performs worse than patient 
specific model due to the variability of individual biomark-
ers across patients. Inspired by the idea of transfer learning, 
we present a patient specific method that employs our optical 
memristive synapse to fine-tune the pre-trained model. In the 
first stage, we train all the informative features from signals 
of all available subjects for the general feature extraction. 
In the second stage, we maintain the feature extraction part 
with fixed convolutional weights but fine-tune the memris-
tive synapse in fully connected layer through individual 
patient prediction results or unseen subjects. We evaluate 

our method with three biomedical tasks: electroencepha-
logram (EEG)-based seizure prediction, electromyography 
(EMG)-based gesture recognition, and electrocardiogram 
(ECG)-based arrhythmia detection. For three physiological 
tasks with new patients or unseen data, we all observe the 
improvement in training accuracy with fine-tuning synaptic 
weights.

While essential for physiological functions, the human 
visual system’s impact extends far beyond, playing a criti-
cal role in both survival and learning. In a highly efficient 
process, the retina swiftly detects light stimuli and pre-
processes image information in parallel before the brain 
undertakes more intricate tasks [18–22]. Recent years have 
witnessed remarkable advancements in digital vision sys-
tems. These systems predominantly rely on conventional 
technologies such as complementary metal–oxide–semi-
conductor (CMOS) imagers or charge-coupled device 
(CCD) cameras [23–26]. They have rapidly evolved 
to facilitate computer vision through the integration of 
extended digital processing units, operating in both serial 
and coarse parallel configurations [27, 28]. Nonetheless, 
conventional digital artificial vision systems often grap-
ple with challenges such as excessive power consumption, 
substantial physical dimensions, and prohibitively elevated 
costs for practical applications. To address these limita-
tions, researchers are now turning their attention to neuro-
morphic vision sensors, drawing inspiration from biologi-
cal systems. These sensors seamlessly incorporate image 
sensing, memory, and processing capabilities, holding the 
potential to effectively surmount these drawbacks [29–32]. 
In this regard, photonic memristive devices hold prom-
ise for future artificial vision systems, offering not only 
sensing abilities but also the capacity to perform temporal 
memory and real-time visual information processing via 
on-chip computing [33–38].

In order to extend the system performance gains, which 
is necessary in edge devices, it is important to combine new 
device technologies with new system architectures which 
collectively can address the von Neumann architecture wall; 
the memory wall. One such promising system architecture is 
based on the ability to integrate different technologies and 
materials in 3D. While several 3D heterogeneous integration 
schemes exist which use either 2.5D interposers or through-
silicon-vias (TSVs), the monolithic 3D integration approach 
shows many advantages in terms of ultra-dense integration 
of different materials, devices and technologies (i.e. logic, 
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memory, sensors, etc.) on random vertical layers within the 
same chip stack. Nevertheless, the main challenges that the 
monolithic integration faces are the limitation in the thermal 
budget (< 450 °C to avoid damaging the previously grown lay-
ers and devices) as well as concerns related to the reliability 
and yield as the number of stacked layers increases. Different 
solutions are being studied to overcome these challenges such 
as developing and optimizing growth recipes to achieve lay-
ers with high quality materials for the different active layers 
at lower temperatures, developing back-end-of-line (BEOL) 
compatible devices and thermally dissipative layers, improv-
ing the reliability of the inter-layer vias, etc. [39]

While several previous works have reported BEOL-com-
patible metal oxides-based single or bilayer flexible memris-
tive devices for data storage and neuromorphic computing 
applications [40–47], nevertheless, they were fabricated on 
either PET or PEN organic substrates, or thin mica glass. 
Moreover, previous studies using oxide based memristors 
mostly focused on the neuromorphic computing application 
and not the photo-sensing added functionality or physiologi-
cal signal processing. Also, most of these reports used the 
sputter deposition technique to grow the active layers which 
makes it challenging to achieve ultra-thin uniform layers. 
Hence, it is still crucial to show a truly back-end-of-line com-
patible multifunctional integration of photo-sensing, effective 
information processing, and storage into a single memristive 
cell on flexible Si substrate for 3D integration within edge 
devices.

In this study, we present a bilayer BEOL-compatible ultra-
thin ZnO (8 nm)/HfOx(5 nm)-based multifunctional optoelec-
tronic flexible memristive synaptic device capable of exhibiting 
electrical and light-induced synaptic features within a single 
memristive device. Towards making the technology transfer 
faster and to enable BEOL-compatibility, here, we used a 
widely employed system in the semiconductor industry—the 
Atomic Layer Deposition—to grow the sub-10 nm ultra-thin 
switching layers in the device at low temperatures with excel-
lent uniformity. The device’s electrical synaptic properties are 
initially evaluated under varying applied voltage pulses. The 
device successfully demonstrated numerous synaptic features 
such as long-term potentiation (LTP), long-term depression 
(LTD), short-term plasticity (STP), and paired-pulse facili-
tation (PPF) through the application of voltage pulse series. 
Light-induced long-term plasticity (LTP) can be achieved by 
adjusting the time interval of optical light pulses. The device 
effectively performs advanced synaptic functions, including 

photo synaptic current (PSC), photonic PPF, short-term mem-
ory (STM), long-term memory (LTM), and learning-forgetting-
relearning processes by tuning the 456 nm wavelength optical 
light. By modulating light intensities and exposure times, the 
photonic memristive device can accurately emulate human vis-
ual perception and visual memory. These findings demonstrate 
the photonic memristive synaptic device possesses significant 
potential for developing human visual perception systems as 
well as its ability to perform patient-specific physiological sig-
nal processing. It should be noted that while various oxides 
have been reported in the past for application in optoelectronic 
synapses, these have been limited by either their low endur-
ance or reliability due to the un-optimized growth process, their 
rigidity and thus incompatibility with flexible IoT wearables, 
and/or their application in image recognition mainly. It should 
be emphasized that this is the first demonstration of the poten-
tial of ZnO/HfOx based optoelectronic synapses in physiologi-
cal signal processing applications. Table S1 (Note-S1 in Sup-
plementary Information) shows a comprehensive comparison 
between previously reported oxides-based memristive synapses 
and this work [37, 42–65].

2  Experimental Section

2.1  Device Fabrication

The proposed device was fabricated on a 4-inch Si wafer. 
Prior to fabrication, the Si wafer was cleaned using iso-
propyl alcohol (IPA) and deionized (DI) water, followed 
by drying with  N2 gas. Initially, a 250 nm  SiO2 layer was 
grown on the Si wafer via plasma-enhanced chemical vapor 
deposition (PECVD) at 400 °C. Then, the bottom electrode 
Pt was patterned by optical lithography on the wafer. After 
Pt, a 5 nm  HfOx and 8 nm ZnO as a switching layer were 
grown by atomic layer deposition (ALD) at 250 °C. Sub-
sequently, a 100 nm ITO top electrode was deposited by 
sputtering and patterned through a liftoff process to prepare 
an ITO/ZnO/HfOx/Pt memristive crossbar array with the 
cell size of 10 × 10 µm2. The detailed fabrication process 
flow of the crossbar array can be found in Note-S2.

2.2  Device Flexing

To thin down the devices for physical compliance, a 
deep reactive ion etching (DRIE) tool was used. A thick 
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photoresist (≈10 μm) was spin-coated on the sample to 
protect the active devices from the top surface. Next, the 
sample was turned upside-down on a carrier wafer for 
etching the backside bulk silicon. The whole back-etching 
process was divided into multiple steps to make sure that 
the required thickness was achieved without over-etching. 
In the first four steps, the sample thickness was reduced 
from 525 to 100 μm, and the final four steps were used to 
achieve ≈40 μm with a reduced etch rate. The etch process 
was carried out at a temperature of − 20 °C, 1500 W ICP 
power and 60W RF power, 20 mTorr pressure, and 80 
sccm SF6 flow. In between each etching step, the actual 
sample thickness was measured using a physical pro-
filometer to confirm the thickness of the substrate. Once 
the expected thickness was achieved, the photoresist was 
stripped using acetone/IPA, and the sample was placed on 
a semi-circular support for further characterization.

2.3  Characterization and Measurement

The cross-sectional structure and layer-by-layer mate-
rial composition were analyzed using a high-resolution 
transmission electron microscope ((FIB lamella fabrica-
tion: Helios G4 FIB/SEM (ThermoFischer Scientific), 
STEM imaging and EDS elemental mapping: ThemisZ 
S/TEM microscope working at 300 kV (ThermoFischer 
Scientific)). X-ray photoelectron spectroscopy (XPS) was 
performed on ZnO and  HfOx samples under high vacuum 
using a Kratos Amicus XPS system, equipped with a mon-
ochromatic Al Kα X-ray source operating at 10 kV. The 
device’s electrical characteristics were measured using an 
Agilent B1500A semiconductor device parameter analyzer. 
For photoinduced measurements, a visible blue light-
emitting diode source (456 nm, Shanghai Dream Lasers 
Technology) and electronic shutter controller (Newport) 
were employed.

3  Results and Discussion

3.1  Physiological Signal Processing

The human body is a complex organism composed of mil-
lions of physiological systems, and as such, physiological 
activities can serve as indicators of both physical and mental 

states. The processing of physiological signals plays a criti-
cal role in monitoring various aspects of human physiology. 
Figure 1a shows the schematic diagram of physiological sig-
nals processing framework for EEG, EMG, and ECG. The 
non-invasive EEG signals can be used to reconstruct con-
sciousness patterns in the brain and even detect eye move-
ments for identity verification, EMG assesses muscle and 
nerve function, aiding in the diagnosis of neuromuscular 
disorders and muscle-related issues and ECG records the 
electrical activity of the heart, helping diagnose and moni-
tor heart conditions, such as arrhythmias and heart attacks. 
These tests play a crucial role in diagnosing and treating a 
wide range of neurological and cardiac disorders, enabling 
healthcare professionals to provide targeted care to their 
patients. However, the effective processing of physiological 
signals demands attributes like high resolution, sensitivity, 
speed, and low power consumption, which can pose chal-
lenges in practical hardware design. Memristor devices offer 
a promising solution in this context, demonstrating several 
advantages over traditional Von Neumann architecture sys-
tems in accelerating neural networks. By integrating mem-
ristor networks into hardware systems for physiological sig-
nal processing, we can achieve higher energy efficiency and 
lower latency compared to conventional implementations. 
This innovative approach holds great potential in advancing 
the field of physiological signal processing. Figure 1b shows 
the schematic architecture of the ITO/ZnO/HfOx/Pt crossbar 
array. Inspired by biological eyes, our group has developed 
a ZnO/HfOx-based optoelectronic device capable of achiev-
ing in-sensor computing. This innovation combines informa-
tion sensing and neuromorphic computing functionalities 
within a single device. The opto-electronic device achieves 
the integration of visible information sensing, memory, and 
processing, analogous to the functioning of the human visual 
system, which is depicted in Fig. 1c. Optical photograph of 
4-inch Si wafer with integrated of crossbar architecture and 
zoom in image of high-resolution SEM crossbar array with 
a single cell size of 10 × 10 µm2, as shown in Fig. 1d. Fig-
ure 1e shows the human visual system which is composed 
of the retina, optic nerve, and brain. Retina cells, specifi-
cally rods, and cones, capture visual information and con-
vert it into physiological electrical signals. These signals 
are then transmitted to the brain via the optic nerve. After 
initial processing in the retina, the brain further processes 
visual signals to facilitate recognition, learning, and memory 
functions (Fig. 1f). Information is primarily conveyed from 
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the retina to the brain through the release and reception of 
transmitters (such as  Ca2+,  Na+, or  K+) between pre-synaptic 
and post-synaptic neurons across the synapse membrane [66, 
67], as depicted in Fig. 1g.

3.2  Materials Characterizations

The high-resolution cross-sectional transmission electron 
microscope (HR-TEM) images of the ITO/ZnO/HfOx/Pt 
device with the scale bar of 100 and 20 nm are depicted 
in Fig. 2a, b, respectively. Figure 2c, d represents the color 
TEM image and the energy dispersive spectroscopy (EDS) 
line profile to verify the thickness of various layers and the 
elemental profile within the ITO/ZnO/HfOx/Pt memristive 
synaptic device. A uniform ⁓5 nm thick  HfOx layer and an 
⁓8 nm thick ZnO layers are clearly visible on the Pt bottom 

electrode. The EDS line profile confirms the presence of 
different elements, such as indium (In), tin (Sn), oxygen 
(O), zinc (Zn), hafnium (Hf), and platinum (Pt) within the 
structure. Elemental mapping for Pt, Hf, Zn, O, Sn, and In 
supports the existence of a multilayered configuration, as 
illustrated in Fig. 2e–j.

The chemical composition of the  HfOx and ZnO thin 
films is examined using X-ray photoelectron spectroscopy 
(XPS) spectra, as shown in Fig. 2k–n. Figure 2k reveals 
that the core-level XPS spectrum of Hf 4f is deconvoluted 
into two peaks. The Hf 4f XPS spectra confirm the dou-
blet peaks at 16 eV (Hf 4f7/2) and approximately 19 eV 
(Hf 4f5/2), corresponding to the Hf–O bonds in the  HfOx 
film [68]. The O 1s spectra of the  HfOx layer are depicted 
in Fig. 2l. The major binding energy peak at 530.4 eV, 
originating from Hf–O bonds in the  HfOx film, represents 

Fig. 1  a Schematic diagram of physiological signals processing framework which is showing physiological organs such as EEG, EMG, and 
ECG of human body: Non-invasive EEG signals enable the reconstruction of consciousness patterns in the brain and the detection of eye move-
ments for identity verification, EMG evaluates muscle and nerve function, assisting in diagnosing neuromuscular disorders and muscle-related 
issues, while ECG records the electrical activity of the heart, aiding in the diagnosis and monitoring of heart conditions like arrhythmias and 
heart attacks. b Schematic architecture of the crossbar array. c Integration of visible information sensing-memory-processing of the device. d 
Optical photographic image of the crossbar architecture which was fabricated on 4-inch Si wafer (there are 14 blocks on the wafer, and every 
block has 100 × 100 crossbar devices) and zoom in SEM image of the crossbar array with the cell size of 10×10 µm2. Schematic representation 
of the biological human visual system which is comprises the retina, optic nerve, and brain. e Detailed depiction of the human eye’s retina. f Dia-
gram of the human brain. g Schematic illustration of neurotransmitter between pre-synaptic and post-synaptic sites in the retina
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Fig. 2  a, b HR-TEM cross-sectional images of the ITO/ZnO/HfOx/Pt device, with scale bars of 200 nm and 20 nm, respectively. c, d Color 
TEM and EDS line profiles are used to confirm the presence of various elements within the device. e‑j EDS elemental mapping for Pt, Hf, Zn, 
O, Sn, and In within the device. k–n Depth scan XPS spectra of Hf 4f, Zn 2p, and O 1s peaks in  HfOx and ZnO layers

lattice oxygen, while the minor binding energy peak at 
532.3 eV is associated with oxygen vacancies in the  HfOx 
layer [69]. Figure 2m presents the XPS spectra of Zn 2p, 
which is deconvoluted into two peaks: the doublet peaks at 
1023 eV (Zn 2p3/2) and 1046 eV (Zn 2p1/2), corresponding 
to the Zn–O bonds in the ZnO layer [70, 71]. The doublet 
O 1s spectrum of ZnO confirms that the lower binding 
energy at 528.5 eV represents lattice oxygen, while the 
higher binding energy at 530.2 eV signifies oxygen vacan-
cies in the ZnO layer (Fig. 2n) [72]. The core-level XPS 
analysis of the thin films verifies the distinct presence of 
 HfOx and ZnO layers in the memristive device.

3.3  Electrical RS Characteristics

The current–voltage (I–V) and synaptic characteristics of 
the memristive device were evaluated as shown in Fig. 3. 
Figure 3a presents a schematic illustration of the ITO/ZnO/
HfOx/Pt device with a bias applied to the ITO top electrode 
(TE) and the Pt bottom electrode (BE) grounded. The device 

exhibits bipolar resistive switching behavior with positive 
SET (~ 0.7 V) and negative RESET (~ − 0.5 V) transitions, 
as displayed in Fig. 3b. The electrical forming process of the 
device is provided in Note-S3. The device exhibits excep-
tional AC endurance, maintaining stability over more than 
 107 cycles without any breakdown. It operates with a write 
voltage of 0.8 V, an erase voltage of − 1 V, and a pulse width 
of 100 µs. The cumulative distribution functions (CDF) of 
the Ion and Ioff states were analyzed, revealing that the vari-
abilities in the on and off states remained within acceptable 
limits throughout the endurance testing [73–76]. The high 
stability and prolonged AC endurance are attributed to the 
conduction mechanism of the device, which is detailed in 
Note-S4. This mechanism likely involves stable filamentary 
paths or other reliable charge transport processes that pre-
vent degradation over extended cycling. The device’s ability 
to maintain consistent performance under these conditions 
underscores its potential for long-term use in various elec-
tronic applications, where reliability and endurance are criti-
cal [73–77]. The high stability and long-cycle AC endurance 
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of the device are explained based on the conduction mecha-
nism in Note-S4. The DC endurance, device-to-device sta-
bility, cycle-to-cycle uniformity, and high-temperature reten-
tion tests for the device are detailed in Note-S5.

To emulate bionic synaptic plasticity, voltage pulses 
were applied to the memristive device, as shown in Fig. 3d. 
Consistent STP, LTP, STD, and LTD were achieved using 
100 identical positive voltage pulses (0.8 V/100 ns, 300 ns, 
500 ns) followed by 100 identical negative voltage pulses 
(− 1 V/100 ns, 300 ns, 500 ns). These results verify that 
the synaptic weight (conductance) of the device can be 
increased or decreased by applying positive and negative 
voltage pulses, respectively. The short-term and long-
term potentiation and depression behaviors are demon-
strated when sequential voltage pulses are introduced to 
the pre-synapse, as shown in Fig. 3d. Notably, a longer 
pulse width generates a relatively fast potentiation process, 
whereas short-term depression is induced by negative pulse 
sequences. Similarly, a shorter pulse can lead to a relatively 
slow depression process. The memristors exhibit long-term 
potentiation and depression under positive and negative 

pulse sequences, respectively, suggesting their potential 
applications in emulating the excitation and inhibition of 
biological synapses. Figure 3e shows the repeatability of the 
LTP and LTD performance of the device over a total of 1728 
cycles, where each cycle comprises 200 conductance states 
(100 for potentiation and 100 for depression) corresponding 
to the applied AC pulses.

Paired-pulse facilitation (PPF) is another crucial aspect 
of synaptic plasticity that plays a vital role in achieving 
advanced learning and memory, as illustrated in Fig. 3f. In 
the inset of Fig. 3f, the PPF index is defined by the expres-
sion  (A2/A1) × 100%, where  A1 and  A2 represent the current 
responses of the synapse to the first and second pulse volt-
age, respectively. Figure 3f illustrates the PPF index as a 
function of Δt. The PPF index exhibits an exponential decay 
as Δt increases, characterized by a decaying time constant. 
This exponential decay mirrors the behavior observed in 
biological synapses. After applying a voltage on presyn-
aptic terminal, the change in excitatory current is denoted 
as  A1. The increase in current for the second pulse, as a 
postsynaptic pulse in a neuron, is termed as the excitatory 

Fig. 3  Electrical and synaptic properties of the ITO/ZnO/HfOx/Pt device. a Schematic representation of the device. b Electrical I–V characteris-
tics of the memristor, showcasing positive SET (0.7 V) and negative RESET (-0.5 V) transitions. c AC endurance of the memristive device at a 
speed of 100 μs for both SET and RESET operations. d Short-term potentiation (STP) to long-term potentiation (LTP) and short-term depression 
(STD) to long-term depression (LTD) of the memristor, induced by a series of voltage pulses (+ 0.8 V for potentiation, -1 V for depression, pulse 
width: 100, 300, and 500 ns). e Repetitive potentiation and depression 1728 cycles. f Paired-pulse facilitation (PPF) index of the device. Inset: 
schematic depiction of the paired-pulse facilitation measurement
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post-synaptic current (EPSC) [51]. The increase in current 
after applying a postsynaptic spike is represented as  A2.

3.4  Optoelectronic Characteristics

In addition to the electrical synaptic properties, we show 
that our device also demonstrates changes in PSC when 
exposed to light. Here, we investigate the optoelectronic 
synaptic features of the device using a series of optical 
light pulses with varying intensities and durations, as illus-
trated schematically in Fig. 4a. In the human brain, pre-
synaptic neurons connect to post-synaptic neurons. Our 
two-terminal optoelectronic memristive synapse resem-
bles the biological synapse in the human brain. Figure 4b 
shows the photo-synaptic current (PSC) response of the 
device when exposed to optical light (456 nm) at 9.5 mW 
 cm−2 for 5 s. All the photo synapses depicted in Fig. 4 
were measured under a read voltage of 10 mV and read 
voltage-dependent responses were depicted and discussed 
in Note-S6. The PSC of the device increased to 75 nA, 
with a noticeable current change of 18 nA. This significant 
increase in PSC is attributed to the photoconductive effect 
of ZnO and  HfOx within the device. After removing the 
optical light, the device exhibits a gradual decay in PSC 
instead of quickly returning to the initial current, which 
could be attributed to persistent photoconductivity (the 
device’s mechanism is depicted in Note-S7) [25]. This 
PSC decay can be disrupted by applying negative volt-
age pulses. As shown in Fig. 4b, the decay current of the 
device drops abruptly from 75 to 57 nA (initial state) when 
a − 1 V voltage pulse with a 100 µs duration is applied 
at 30 s, confirming photonic potentiation and electrical 
depression (elimination).

The PSC of the memristive device is altered by apply-
ing various intensity levels (2.7, 3.6, 5.2, 6.9, and 9.5 mW 
 cm−2), as shown in Fig. 4c. Greater intensity corresponds to 
increased current conductance, and its decay is also influ-
enced by light intensity. Lower intensity light results in a 
minor increase in current conduction, which quickly returns 
to its initial state upon power removal, resembling STM in 
the human brain. When higher intensity light is removed, 
the photocurrent decays slowly and remains at an elevated 
level above its initial state, acting like LTM in the human 
brain. Moreover, we examined the transition from STM to 

LTM by adjusting the illumination duration (1, 2, 3, 4, and 
5 s) of light, as presented in Fig. 4d. Longer light exposure 
times correspond to increased PSC and a slower decay rate. 
In summary, the optoelectronic memristive device’s PSC 
response can be converted from STM to LTM by modulat-
ing light intensity or exposure time, highlighting its efficient 
ability to mimic advanced memory functions for visible 
light. We further investigate the light-irradiated synaptic 
plasticity (PPF) of the optoelectronic device, as shown in 
Fig. 4e. The photonic PPF was examined when the time 
interval (Δt) between two identical optical pulses was var-
ied. The photocurrent  (A2) of the device after the second 
illumination with an intensity of 9.5 mW  cm−2 (duration: 
1 s, interval: 10 s) is higher than the photocurrent  (A1) after 
the first illumination with the same light intensity, which is 
closely related to Δt. The photonic PPF can also be calcu-
lated using the same equation as electrical PPF, as shown in 
Fig. 3f. The curve demonstrates excellent mimicry of syn-
aptic photonic PPF features, which is an essential synaptic 
function in neuromorphic vision systems [78].

By continuously switching the light on and off, the 
device’s PSC significantly improves with increased light 
pulses, as illustrated in Fig. 4f. The device’s PSC increased 
from 57 to 93 nA after 30 continuous on/off cycles. This 
exceptional repeatability in PSC response facilitates the 
simulation of advanced synaptic functions in synaptic plas-
ticity, represented by the "learning-forgetting-relearning" 
process [79]. We also demonstrated the learning-forgetting 
process for our optoelectronic memristor by continuously 
toggling the light on and off, as shown in Fig. 4g. Turning 
on the light represents learning and relearning behavior 
in the device, while turning it off showcases the forget-
ting behavior. The PSC of the device increases with light 
exposure and then decreases to an intermediate level after 
a certain period, suggesting that the learned information is 
gradually forgotten over time. After continuously repeat-
ing the learning or relearning process, the device’s PSC 
improves slightly  (A6 >  A5 >  A4 >  A3 >  A2 >  A1), signify-
ing that previously learned information can substantially 
enhance memory capacity. The device’s PSC reaches its 
maximum level  (A6) after six consecutive learning and 
relearning processes, indicating the transition from STM 
to LTM is accomplished in the optoelectronic memristive 
device.
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3.5  Reliability Under Device Flexing

To enhance the capabilities of optoelectronic synapses and 
enable them to adapt to diverse shapes and configurations for 
a range of applications, such as wearables, it is essential for 
the devices to exhibit robust stability even when subjected to 
bending conditions. Figure 5a–c shows the photograph of the 
flexible device during optical testing. To evaluate the photonic 
synaptic features, the device was bent from 4 to 2 cm. The uni-
formity and stability of the devices under bending conditions 
were assessed by performing general voltage sweeps under 
both flat and bending (2 cm) conditions, as depicted in Fig. 5d. 
To facilitate the assessment of cyclic stability, 100 DC cycles 

of I–V sweeps were recorded, and the RS parameters were 
depicted in Fig. 5e. Under bending conditions, both the RS 
characteristics and the SET/RESET variabilities, as well as the 
memory windows of the devices, were observed to be similar 
to those under flat conditions. This indicates that the flexible 
optoelectronic synapses maintain consistent performance and 
reliability even when subjected to mechanical deformation, 
demonstrating their potential for use in flexible and wearable 
electronic applications. The device-to-device uniformity of the 
20 randomly selected device show excellent stability in both 
LRS and HRS states with a bending of 2 cm (Fig. 5f).

Figure 5g depicts the PSC response of the device in flat 
(4 cm) and bent (2 cm) condition when exposed to optical 

Fig. 4  a Schematic representation of biological synapse and artificial optoelectronic memristive synapse. b Light-induced photonic potentiation 
using a single blue light (wavelength: 456 nm, light intensity: 9.5 mW  cm−2, duration: 5 s, indicated by the purple-colored area), and electri-
cal erasure using a voltage pulse (amplitude: − 1 V, duration: 100 µs) in the optical memristive device. c Photocurrent response under light for 
3 s (indicated by the coral-colored area) at various light intensities (dark, 2.7, 3.6, 5.2, 6.9, and 9.5 mW  cm−2), followed by photocurrent decay 
when the light is turned off. d Photocurrent response under a light intensity of 9.5 mW  cm−2 with different time durations (1, 2, 3, 4, and 5 s), 
followed by photocurrent decay when the light is turned off. e PSC of the device for PPF index variation with the time interval (Δt) of photonic 
pulse pairs. Inset: PSC under blue light (intensity: 9.5 mW  cm−2, duration: 1 s) pulse pairs with a 10 s time interval. f Photocurrent response 
under consecutive light pulses. Inset: zoom view of. g Learning-forgetting-relearning process over seven cycles
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light (456 nm) at 9.5 mW  cm−2 for 5 s. The PSC of the device 
was increased for both flat and bent devices. After removing 
the optical light, both devices (flat and bent) exhibit a gradual 
decay in PSC instead of quickly returning to the initial current. 

The PSC of the device exhibits modulation when subjected 
to varying light intensities and time duration, as depicted in 
Fig. 5h and  i, respectively. A higher intensity of light and 
higher time duration corresponds to an augmented current 

Fig. 5  Fig. 5 a Photograph of fabricated arrays, b photograph of the flexible photonic memristive synapse during optical measurements, and c 
photograph of the flexing of the device. d RS characteristics though I-V sweep under flat and bent conditions (2 cm). e Endurance characteristics 
under mended conditions measured up to 100 cycles. f Device variability of the fabricated devices under bending conditions in on and off states 
of the devices. g PSC of the device using a single blue light during flat and bending conditions (wavelength: 456 nm, light intensity: 9.5 mW 
 cm−2, duration: 5 s, indicated by the purple-colored area). h Photocurrent response under light for 3 s (indicated by the green-colored area) at 
various light intensities (2.7, 3.6, 5.2, 6.9, and 9.5 mW  cm−2), followed by photocurrent decay when the light is turned off. i PSC under a light 
intensity of 9.5 mW  cm−2 with different time durations (1, 2, 3, 4, and 5 s), followed by photocurrent decay when the light is turned off. j Photo-
current response under consecutive light pulses. k The zoom view of j. l Learning-forgetting-relearning process over seven cycles. m PPF index 
variation with the time interval (Δt) of photonic pulse pairs. Inset: PSC under blue light (intensity: 9.5 mW  cm−2, duration: 1 s) pulse pairs with 
a 10 s time interval.
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conductance, and the rate of its decay is also influenced by the 
intensity of light and time duration. In contrast, lower inten-
sity light and lower time results in a slight increase in current 
conduction, which rapidly reverts to its initial state upon power 
interruption, akin to STM processes observed in the human 
brain. Conversely, with the removal of higher intensity light 
and higher time duration, the PSC exhibits a gradual decay and 
maintains an elevated level above its initial state, like the con-
cept of LTM in the human brain. In conclusion, the optoelec-
tronic memristive device demonstrates the capability to trans-
form its PSC response from STM to LTM by manipulating 
either the intensity of light or the time duration of exposure.

Through the continuous cycling of light on and off, PSC 
response of the device exhibits a notable enhancement with 
an increasing number of light pulses, as depicted in Fig. 5j. 
The PSC of the device escalates from 57 to 83 nA following 
30 successive on/off cycles. Figure 5k shows the zooming part 
of Fig. 5j. Furthermore, we have demonstrated the learning-
forgetting process for our flexible device by repeatedly switch-
ing the light on and off, as illustrated in Fig. 5l. Illuminating 
the device corresponds to learning and relearning tendencies, 
whereas extinguishing the light signifies the act of forgetting. 
The PSC of the device exhibits an increment with light expo-
sure, followed by a decline to an intermediary level after a 
certain duration, indicating a gradual fading of acquired 
knowledge over time. Through the persistent repetition of the 
learning or relearning cycle, the device’s PSC experiences 
incremental enhancements  (A6 >  A5 >  A4 >  A3 >  A2 >  A1), 
underscoring the potential of previously assimilated informa-
tion to significantly expand memory capacity. Ultimately, the 
device attains its peak PSC level  (A6) after six consecutive 
learning and relearning phases, representing the successful 
transition from STM to LTM within the optoelectronic mem-
ristive device. We further investigate the PPF of the flexible 
device, as shown in Fig. 5m. The PPF was calculated using 
the same equation as electrical PPF, as shown in Fig. 4e. The 
curve demonstrates excellent mimicry of synaptic photonic 
PPF features, which is an essential synaptic function in neu-
romorphic vision systems. These excellent features in the flex-
ible device make it highly efficient in wearable applications.

3.6  Optoelectronic Image Mapping

Observations of visual memory suggest that memory reten-
tion can be improved by increasing the number of cycles or 

by extending the stimulus duration, also known as memory 
recall. In our study, we evaluated the visual memory func-
tion using a 5 × 5 device array, which follows the "learning-
forgetting-relearning" process. Similar to the human visual 
system, this array has the ability to detect optical vision 
pulse and produce the corresponding PSC change. Figure 6a 
displays the photocurrent response for varying numbers of 
cycles (1, 2, 3, … 7). As anticipated, the PSC response rises 
with more cycles, with a 16 nA difference between the 1st 
and 7th cycles. Figure 6b, c show the conductance state for 
different stimulus numbers at decay times of 5 and 10 s, 
respectively. The findings disclose that memory strength 
increases with a higher number of stimuli, which leads to 
longer decay times for forgetting. To assess the sensing 
ability of our visual perception, we introduced the charac-
ters "T," " + ," and "Z" with 1, 3, and 7 cycles, respectively 
(Fig. 6d–f). We observed that the letter "T" can only be 
remembered briefly and becomes blurred over time until 
it’s forgotten, indicating that a single cycle is not sufficient 
for retaining image information. In contrast, the letter "Z" for 
5 cycles presented a clear image contour even after a decay 
time of 10 s. By adjusting the light stimulus, we were able 
to efficiently modulate the device conductance following 
the "learning-forgetting-relearning" rules without requiring 
any additional voltage pulse, thus effectively emulating the 
human visual perception property. These results demonstrate 
the array’s ability to learn and simulate visual functions and 
highlight its potential as an artificial visual perception in 
future electronic vision systems. We have demonstrated our 
device for human visual system by varying the light intensity 
and fixed illumination time in Note-S8.

3.7  ECG Signal Visualization

Figure 7a shows the process flow of our wearable biomedical 
processing system. First, the network is pretrained on three 
open-source datasets for three biomedical tasks (see Note-
S9). Network details are available in supplementary infor-
mation Table S2. For feature extraction part, we fixed the 
weights of convolutional layer and pooling layer to extract 
general feature. For the fully connect layer, the weights are 
initially established through the pre-training process, but 
subsequently fine-tune based on specific patient or new 
subjects. The optimization fine-tune process can be found 
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in Note-S10. Figure 7b shows the conductance state change 
in our hardware synapse with both electrical and optical pro-
gramming techniques. Figure 7c presents the ECG signal 
visualization for normal and abnormal events, which can 
be classified by our network model. Figure 7d illustrates the 
weight state change before and after fine-tune process. The 
fine-tune process adjusts network weight to have a better 
performance under new subject or patient. With the ability 
of programmability and flexibility, our memristor device can 
serve as hardware synapse and implementation of synaptic 
weight in neural networks. In ECG-based arrhythmia detec-
tion, as new subjects are introduced, the fine-tuned model 
yields better performance. Specifically, it leads to a clas-
sification accuracy of 97.03% after 10 epochs and 98.02% 
after 50 epochs, as illustrated in Fig. 7e. In contrast, the 
original model maintains a stable accuracy of approxi-
mately 93.13%. In Fig. 7f, we summarize the training result 
for three biosignals in the table. These results clearly dem-
onstrate that the fine-tuned model with memristor exhibits 

significantly improved performance compared to the original 
configuration.

Integrating this technology into wearable or implantable 
devices, one limitation arises in terms of the complexity 
involved in integrating functionalities, particularly in cir-
cuit design, to balance speed and precision in optosynaptic 
operations like EPSC for more accurate biological synapse 
emulation. Resolving noise and interference issues, espe-
cially in dense memristor arrays with optical stimulation, 
becomes crucial for robust and reliable operation. Future 
directions will focus on developing advanced circuit designs, 
including neuromorphic architectures and on-chip photosyn-
apse, to optimize optosynapse-memristor systems for spe-
cific applications. This involves integrating machine learning 
algorithms for adaptive control and optimization of optosyn-
aptic networks, enabling real-time learning and adaptation. 
Additionally, exploring interfaces with biological systems, 
such as brain-inspired interfaces, holds promise for appli-
cations in neuroprosthetics, brain-machine interfaces, and 
neural computing. Overcoming scalability and manufacture 

Fig. 6  The current conductance of the optoelectronic memristor after various number of cycles at a 0 s, b 10 s, and c 5 s decay time. The image 
mapping for current conductance after d 1 cycle, e 3 cycles, and f 7 cycles
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challenges is crucial to realizing large-scale optosynaptic 
memristor arrays for practical applications in artificial intel-
ligence and computing.

4  Conclusion

In this study, a back-end-of-line compatible optoelec-
tronic flexible memristor is designed for both physiologi-
cal signals processing and visual processing applications. 
The crossbar array memristive device in combination 
with a transfer learning approach for healthcare applica-
tions. These applications encompass EEG-based seizure 
prediction, EMG-based gesture recognition, and ECG-
based arrhythmia detection. Through experimentation on 
three distinct biomedical datasets, we note a significant 
enhancement in classification accuracy for the pretrained 
model, specifically 2.93% improvement for EEG, 4.90% 

for ECG, and 7.92% for EMG, respectively. The device 
demonstrates advanced synaptic properties, including 
long-term and short-term memory, as well as learning, 
forgetting, and relearning when exposed to visible light 
when device was bent to 2 cm. These advanced properties 
can enhance information processing capabilities for neu-
romorphic applications. Notably, STM can be transformed 
into LTM by adjusting the light intensity and duration of 
exposure. In order to exploit the device’s light-responsive 
features, a 5 × 5 synaptic array was created to showcase its 
potential use in artificial visual perception. The combina-
tion of these features in a single memristive cell makes it 
highly suitable for applications in image recognition and 
artificial visual perception for wearable applications.
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