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HIGHLIGHTS

• With its layered structure, abundant functional groups, and excellent electrical conductivity, MXene is of great research interest in 
the field of gas sensing.

• The preparation technology of gas sensors is constantly being optimized, opening up avenues for the development of gas sensing.

• MXene-based composite materials (MXene/graphene, MXene/metal oxides, MXene/MOF, and MXene/polymer) are applied in various gas sensors.

ABSTRACT With the development of science and technology, the scale of industrial 
production continues to grow, and the types and quantities of gas raw materials used in 
industrial production and produced during the production process are also constantly 
increasing. These gases include flammable and explosive gases, and even contain toxic 
gases. Therefore, it is very important and necessary for gas sensors to detect and monitor 
these gases quickly and accurately. In recent years, a new two-dimensional material called 
MXene has attracted widespread attention in various applications. Their abundant surface 
functional groups and sites, excellent current conductivity, tunable surface chemistry, and 
outstanding stability make them promising for gas sensor applications. Since the birth of 
MXene materials, researchers have utilized the efficient and convenient solution etching 
preparation, high flexibility, and easily functionalize MXene with other materials to pre-
pare composites for gas sensing. This has opened a new chapter in high-performance gas 
sensing materials and provided a new approach for advanced sensor research. However, 
previous reviews on MXene-based composite materials in gas sensing only focused on the 
performance of gas sensing, without systematically explaining the gas sensing mechanisms generated by different gases, as well as summarizing 
and predicting the advantages and disadvantages of MXene-based composite materials. This article reviews the latest progress in the application 
of MXene-based composite materials in gas sensing. Firstly, a brief summary was given of the commonly used methods for preparing gas sens-
ing device structures, followed by an introduction to the key attributes of MXene related to gas sensing performance. This article focuses on the 
performance of MXene-based composite materials used for gas sensing, such as MXene/graphene, MXene/Metal oxide, MXene/Transition metal 
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sulfides (TMDs), MXene/Metal–organic framework (MOF), MXene/Polymer. It summarizes the advantages and disadvantages of MXene com-
posite materials with different composites and discusses the possible gas sensing mechanisms of MXene-based composite materials for different 
gases. Finally, future directions and inroads of MXenes-based composites in gas sensing are presented and discussed.

KEYWORDS MXene; Compound material; Gas sensor; Gas sensitive preparation; Gas sensitivity performance

1 Introduction

As a key component in information acquisition and signal 
conversion, sensors play an irreplaceable role in Internet 
of Things technology [1–4]. Among them, gas sensing can 
convert gas molecular signals over optical signals, electri-
cal signals, etc., widely applicable to aerospace, industrial 
production, agricultural planting, and human health monitor-
ing, to realize monitoring, forecasting, and automatic control 
of toxic and harmful gases, as well as prediction of human 
respiratory system diseases [5]. Sensors are mainly classi-
fied into electrical (resistive/capacitive), electrochemical, 
mass-sensitive, and optical types [6]. Electrical gas sensors 
are widely studied due to their simple structure and easy 
processing of output signals. Gas sensing materials in elec-
trical sensor components can adsorb gas molecules through 
physical/chemical interactions and undergo charge transfer, 
thereby causing changes in the electrical signal of the device. 
Currently, electrical gas-sensitive materials include metal 
oxide semiconductors (MOSs), precious metals, carbon 
materials, organic materials, and two-dimensional materials. 
Since the discovery of graphene, two-dimensional materials, 
such as transition metal chalcogenides (TMDs) [7], boron 
nitride (BN) [8], layered double hydroxides (LDHs) [9], 
black phosphorus (BP) [10], and transition metal carbon/
nitrides (MXenes) [11], have also been applied in the field 
of gas sensing. MXenes have become an emerging gas sens-
ing material due to their unique layered structure, significant 
physical, optical, and electrical properties, as well as active 
surfaces [12, 13].

MXenes was proposed in 2011 by the Gogotsi group at 
Drexel University, USA [14]. Within the passed-century, 
MXenes and its composites have been receiving quite a lot 
of attraction in the field of energy storage and conversion 
[15, 16], electromagnetic shielding [17], and sensitive elec-
tronics [18]. Two-dimensional MXenes present a promising 
class on sensitive properties and a wide variety of struc-
tures, tunable structures, and controllable surface termina-
tions [19]. In 2017, Lee et al. [20] found for the first time 

experimentally that  Ti3C2 MXene has good gas-sensitive 
properties and exhibits gas-sensitive properties at room tem-
perature [21–28]. Because common semiconductor gas-sen-
sitive materials operate at high temperatures of 200–400 °C 
[29–32], MXene with room temperature gas-sensitive prop-
erties has the following advantages as a gas-sensitive mate-
rial: (1) energy saving and simplification of the gas sensor 
structure [33, 34]; (2) painted on suitable matrix materials to 
develop portable and flexible gas sensors [35–41].

In recent years, the rapid development of MXenes has 
led to their rapid application in the field of gas sensing 
(Fig. 1) [1, 35, 38]. MXenes-based gas sensors are expected 
to achieve efficient and rapid detection of gases such as 
ammonia  (NH3), nitrogen dioxide  (NO2), and volatile 
organic compounds (VOCs) at room temperature [42–44]. 
However, due to its excellent electron transfer performance, 
two-dimensional layered structure, and abundant terminal 
groups, MXenes are not only sensitive to inorganic gases 
prone to electron loss or capture, but also highly sensitive to 
volatile organic compounds such as alcohols, ketones, and 
aldehydes [45]. This results in poor selectivity and specific-
ity of MXenes in gas detection. Therefore, researchers often 
use surface modification, doping, and composite methods to 
enhance the gas sensing characteristics of MXenes [46–52]. 
Among them, compounding is an important strategy [53, 
54]. The gas-sensitive composite phases of MXenes mainly 
include graphene and its derivatives, metal oxides, TMDs, 
MOFs, and polymers [55–57].

The current paper reviews the recent research progress 
of MXenes-based composites for gas sensors. Figure 2 
shows an overview of the review article, highlighting the 
preparation of gas sensors, with a focus on the synthe-
sis, advanced performance, and gas sensing behavior of 
MXenes composite materials (MXene/graphene, MXene/
metal oxides, MXene/transition metal sulfides (TMDs), 
MXene/metal–organic framework (MOF), MXene/poly-
mer). Finally, the (potential) advantages and challenges 
related to the development of MXenes were systematically 
discussed.
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2  Preparation of Gas Sensors

Electrical gas sensors are sensors that convert gas compo-
sition and concentration into electrical signals [58–61]. In 

today’s highly digitized and intelligent world, the increas-
ingly deteriorating environmental and personal health 
issues have attracted widespread attention [27, 62–66]. In 
this regard, the development and design of gas sensors have 

Fig. 1  A significant research schedule of MXene compounded with other materials for gas sensors includes MXene self-modification, MXene/
graphene, MXene/metal oxide, MXene/transition metal sulfide, MXene/MOF, MXene/polymer, etc. Reproduced with permission from Refs. [1, 
35, 38, 42–44]
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received attention and favor from researchers [67, 68]. Gas 
sensors can detect various gases, such as gas composition 
detection in chemical production, coal mine gas concen-
tration detection and alarm, environmental pollution moni-
toring, gas leakage, fire alarm, combustion detection, etc. 
With the continuous development of social technology, the 
types of substrates continue to increase. However, tradi-
tional methods for preparing gas sensing devices are not 
suitable for many substrates, and traditional methods require 
high preparation conditions, low production efficiency, and 
extremely high preparation costs [69–74]. Therefore, inno-
vative manufacturing technologies for gas sensors are very 
important [75]. Appropriate manufacturing methods for gas 
sensors have provided strong support for the wide applica-
tion of gas sensors by not only improving the performance 
of the sensors, effectively simplifying the process steps and 
reducing the cost of production [76–78].

At present, the existing technologies for preparing sen-
sors include: coating technology [77–82], printing technol-
ogy [83–87], rotating technology [88–93], transfer tech-
nology [94–96] (Fig. 3). These technologies have led to 
enormous efforts in manufacturing optimization, resulting 
in impressive advances in gas sensors [97–113]. Table 1 
summarizes the advantages and limitations of these spe-
cific technologies [114].

Coating technology is a simple and efficient way to pre-
pare sensitive soluble materials into thin-film structures at 
the surface of a substrate [115, 116]. The preparation process 
of this technique is not demanding in terms of equipment 
and fabrication conditions, making it suitable for many sub-
strates, including many flexible substrates, especially if the 
boundary range of the sensitive material film is not strictly 
required [76, 117]. Therefore, the coating technique is also 
one of the most prevalent methods for the fabrication of 

Fig. 2  The structural diagram of MXene and the selection of high sensitivity MXene composite materials for gas sensing devices (MXene self-
modification, MXene/graphene, MXene/metal oxide, MXene/TMDs, MXene/MOF, MXene/polymer). Reproduced with permission from Refs. 
[55–57]
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gas sensors today. Specific methods of coating technology 
include trickle coating, spin coating, spray coating, and 
dip coating. Trickle-coating method is one of the simplest 
ways to prepare gas sensors by selecting a soluble sensitive 
material and applying the material solution dropwise onto 
the substrate via a pipette, which is simple to operate; spin-
coating is an alternative and convenient method of making 
sensitive films, in which a soluble material is dripped onto 
a rotating substrate, which is then dried so that the substrate 
vaporizes the solvent and a sample of the substrate contain-
ing a thin film of the sensitive material is obtained; spray-
coating method can be assisted by ultrasound and combines 
the hydrophilic and hydrophobic properties of the materi-
als adhered to prepare a homogeneous and sensitive film, 
and it is a cost-effective method [79, 80, 118]. However, 
its shortcoming is that for films with specific needs (e.g., 
specific requirements for shape and location), a concealment 
procedure had to be applied to the areas that did the coating 

not need to be applied; dip coating is a versatile and cost-
effective method of preparing gas-sensitive sensors, which 
proceeds by dipping the substrate into a solution of sensitive 
material, then adjusting the speed to lift the substrate out 
of suspension, and finally drying to eliminate any residual 
solvent on the substrate surface.

Printing technology is an innovative and modern manu-
facturing technology that enables the preparation of func-
tional material suspensions based on substrates using the 
appropriate printers and finds its application in a wide range 
of electronic manufacturing applications [81, 119, 120]. Pre-
designed gas sensors, such as specific patterns, film thick-
nesses, and boundary ranges, can be prepared on a massive 
scale by printing technology. Printing technologies can be 
categorized into four main types, which are inkjet print-
ing, screen printing, writing printing, and nano-imprinting. 
Inkjet printing is an intriguing digital method for contactless 
spraying of ink and functional materials onto a variety of 

Fig. 3  Preparation methods for gas sensors: application of coating technology (trickle coating, spinner coating, sprays, soap coating); imprinting 
technology (inkjet printing, silk screen printing, writing printing, nano-imprinting (NL)); transfer technology (electrospinning, other spinning); 
assignment technology (drying transfer, humid transfer, support layer-assisted transfer)
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substrates through micron-sized nozzles; screen printing is 
recognized as a highly attractive and competitive manufac-
turing technology compared to inkjet printing for the rapid 
mass fabrication of microelectronic devices due to its pre-
designed grid pattern and ease of manufacturing process; 
writing printing on a substrate is a familiar and practical 
printing technique in which a combination of a functional 
material solution is deposited on the substrate to form a 
structure by combining it with a pen or any other writing 
instrument; nanoimprint lithography (NIL) is a lithographic 
technique that offers the advantages of high productivity, 
low cost, and simplicity of the process to fabricate nano-
structures in high volume, high resolution (< 5 nm), and 
lower cost. Simply put, NIL technology uses high-resolution 
electron beams and other methods to pattern complex nano-
structures on a stamp, and then deforms the sensitive mate-
rial with the patterned stamp to form the patterned material. 
Unlike traditional photolithography (where the direction or 
energy of the ions of the sensitive material is altered by 
photons or electrons to achieve pattern production), NIL 

technology mechanically deforms the sensitive material 
through direct contact, thus avoiding the resolution limita-
tions of traditional techniques such as light diffraction or 
beam scattering.

Spinning is the process of extracting a precursor func-
tional solution (e.g., polymer solution or melt) from a 
nozzle and depositing it on a collector to create long, con-
tinuous, one-dimensional fibers with micron/nanometer 
diameters [121–123]. Textiles can be coated with sensitive 
materials to form gas sensors. In addition, electronic devices 
based on sensitive optical fibers can be directly fabricated 
for gas detection via incorporating gas-sensitive materials 
into the precursor solution, which is a straightforward and 
effective method. Of the various spinning technologies, the 
electrospinning technology is of great interest and is widely 
utilized for the preparation of a wearable device.

Many substrates are incompatible given that in particular 
conventional fabrication techniques (e.g., chemical vapor 
deposition (CVD)), certain substrates cannot withstand dras-
tic fabrication conditions (e.g., high temperatures, chemical 

Table 1  Summarized the technology for preparing gas sensing equipment, summarized its advantages and disadvantages, as well as the demand 
for materials

Technique Classification Advantage Limitation Requirement for sensitive 
material

Coating techniques Trickle-coating Facile Geometry-uncontrolled Soluble or in solvent suspension
High-efficient

Spinner-coating Facile Sensing material-waste Soluble or in solvent suspension
Thickness uniformity

Sprays Geometry-controlled Nozzle-blockage Soluble or in solvent suspension
Mask-relied

Soap-coating Facile Geometry-uncontrolled Soluble or in solvent suspension
Versatile

Imprinting techniques Inkjet printing Digital controllable backup Nozzle-blockage Soluble or in solvent suspension
Screen printing High-efficient Mesh-relied Soluble or in solvent suspension

Digital controllable backup
Write printing Facile Low-efficient No special
Nanoimprinting (NIL) High resolution Complicated Soft

Transfer techniques Electrospinning High degree of efficiency Irregular shape Soluble or in solvent suspension
Low cost Blockage of nozzle

Other spinning yarn High degree of efficiency Geometry-irregular Soluble or in solvent suspension
Low cost Nozzle-blockage

Assignment technology Drying transfer Facile Geometry-fragmentary No special requirement
Humid transfer Facile Low-efficient Low density

Location-uncontrolled
Supporting layer-assisted 

transfer
Versatile Complicated No special requirement
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etching reagents). The optimum way to resolve these incom-
patibilities lies in the transfer of nanostructures or thin films 
on rigid/donor substrates (e.g., silicon, glass) prepared by 
conventional fabrication techniques to acceptor substrates 
(e.g., PET, PMDS), which is defined as a transfer technique 
[124, 125]. Effective transfer techniques are critical to the 
fabrication of flexible gas sensors, which will enable many 
traditional fabrication processes that are only applicable to 
hard substrates to be used in the manufacture of wearable/
flexible sensors [114]. Transfer techniques consist of dry 
transfers, wet transfers, and support coatings-assisted trans-
fers. Dry transfer utilizes the adhesion gap between the film 
layer and the underlying substrate to transfer the film from 
the primary substrate to the intended substrate; wet transfer 
is available for transferring a mono sensitive layer to a vari-
ety of substrates in service media; and support layer-assisted 
transfer is a prominent transfer technique that utilizes an 
elastomeric impression as a support layer to retrieve a mate-
rial with micro/nanostructures back from the supplier sub-
strate and attach it to a non-natural substrate [126].

However, most of the aforementioned widely practiced 
techniques (e.g., coating, printing, and spinning) rely on 
the sensing material being in the liquid phase, this restricts 
the amount of gas sensing materials available because some 
types of materials with excellent sensing capabilities are 
harder to realize in the bulk of the liquid phase. Spin-coating 
and screen-printing methods result in ink waste due to the 
use of solution-phase materials, while inkjet printing and 
electrospinning processes both require the use of nozzle 
devices, with the risk of nozzle clogging. Moreover, tech-
nology of transfer, particularly transfer with the assistance 
of a supporting layer where at least two etching cycles are 
involved, is partly complex and time-consuming. Hence, a 
long way lies ahead in commercializing the product for the 
exploitation of gas sensors with enhanced performance and 
large-scale production.

3  Structure and Properties of MXene

3.1  Structure of MXene

MXene material is a type of metal carbide or metal nitride 
material with a two-dimensional layered structure. It is a 
two-dimensional transition metal group carbon/nitride 
obtained by selectively etching the A atomic layer in the 

ternary conductive ceramic MAX phase. The phase structure 
of MXene is shown in Fig. 4a, and the general formula of 
MXene structure is  Mn+1XnTx, where M is a transition metal 
(such as Ti, V, and Mo), X represents C or N, n = 1, 2, or 
3,  Tx represents surface terminal groups (-OH, = O, and/or 
-F) [127]. Due to the hexagonal crystal structure formed by 
the interlacing of the M layer and X layer with the A layer 
in the precursor MAX phase of MXenes, the MXene phase 
also has a similarly symmetrical hexagonal lattice (Fig. 4b). 
The M atoms in MXenes are arranged in a tight structure, 
while the X atoms fill the gap positions of the octahe-
dron. There are three arrangements in the MXenes struc-
ture:  BγA-AγB  (M2X-M2X),  BγAβC-CβAγB  (M3X2-M3X2) 
and  BαCβAγB-BγAβCαB  (M4X3-M4X3) [128]. As shown 
in Fig. 4c, the two-dimensional MXene consists of a thin 
sheet that has hexagonal cells, with an X layer sandwiched 
between two M transmission metal layers.

3.2  MXene Characteristics for Gas Sensing

In the aqueous environment of chemical etching solutions, 
the outer surface of the detached MX layer is usually func-
tionalized by -F, -OH or = O functional groups. These sur-
face rich functional groups (-F, -OH or = O) can become 
attachment sites for the direct growth of other nanostructured 
materials or functional molecules [129, 130], which can be 
modified to provide feasibility for improving the selectivity 
of gas sensors. In addition, this surface functionalization 
has a significant impact on the electronic and ion transport 
properties of MXenes, namely, the conductivity of MXenes 
is directly related to the electron transfer process that occurs 
on their surface [131]. MXenes have certain metal proper-
ties and narrow bandgap semiconductor properties, which 
give them the inherent advantage of good conductivity. For 
example,  Ti3C2Tx has a room temperature conductivity of 
up to 10,000 S  cm−1 [132, 133].

Many theoretical calculations have shown that the ideal 
MXene is located near the Fermi level, with a consider-
able electron density and a cash property [128, 130]. 
Lane et al. calculated the ideal single-layer defect free 
MXene nanosheets using density functional theory, and 
the results showed that MXene exhibits metal conduc-
tivity, with Fermi levels higher than its precursor MAX 
phase [131]. However, when its surface is functionalized, 
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some MXenes exhibit semiconductor properties. In addi-
tion, due to the different number of electrons received by 
different surface groups (-F, -OH, or = O) in equilibrium 
states, different surface groups have different effects on the 
electronic properties of MXene, and the orientation of the 
end groups also affects the electronic properties of MXene 
[132]. Table 2 lists the bandgap widths of some MXenes. 
MXenes with different bandgap widths can be used to pre-
pare gas sensing arrays, achieving specific recognition of 
industrial raw gas, exhaust gas, and human exhaled gas. 
In summary, using MXenes as a gas sensing material has 
certain inherent advantages.

4  MXenes Composite in Gas Sensing 
Applications

In recent years, MXene composite materials containing 
graphene, semiconductor metal oxides, transition metal 
sulfides, organic metal frameworks, polymers, and other 
materials have received increasing research in gas sensing 

Fig. 4  a Explain the "M," "A," and "X" elements of MAX phase through the periodic table, as well as the schematic diagram of MXenes 
structure and the currently reported MXenes. Reproduced with permission from Ref. [127]. b Crystal structure of MXene generated from MAX 
phase. c Side views of pristine  M3X2,  M4X3, M’2M”X2, and M’2M”2X MXenes, where M, M’, and M” denote transition metals, and X repre-
sents C or N. Reproduced with permission from Ref. [128]

Table 2  Bandgap width of some MXenes

MXenes Functional group Bandgap (eV) References

Ti2C –F 0.72 [134]
–OH 1.07 [134]
=O 0.24 [135]

Ti3C2 –F 0.39 [134]
–OH 1.35 [134]

Nb2C –F 0.96 [134]
–OH 1.29 [134]

V2C –F 0.24 [134]
–OH 1.09 [134]

Cr2C –F 3.49 [136]
–OH 1.43 [136]

Cr2TiC2 –F 1.35 [137]
–OH 0.84 [137]

Sc2TiC2 –F 1.03 [135]
–OH 0.45 [135]
=O 1.8 [135]

Hf2C =O 1.0 [135]
Hf3C2 =O 0.16 [138]
Zr2C =O 0.88 [135]
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applications. Due to the more metallized nature and narrow 
band gap of MXenes, the addition of metal oxides, graphene 
derivatives, and chalcogenides provides more activated 
adsorption sites, defects, and modulation of working func-
tions, thereby improving gas sensing performance. Table 3 
summarizes the performance of gas/VOC/humidity sensors 
for MXene-based composites.

4.1  MXene/Graphene

Graphene is widely used in various fields because of its 
excellent thermal conductivity, high specific surface area, 
and easily modified structure [139–143]. MXenes are an 
excellent sensing material with a very narrow bandgap, but 
when pure MXenes are used in gas sensing devices, criti-
cal potential barriers are generated during the gas reaction 
process, which hinders their further sensitive response. 
Subsequently, researchers found that combining the two 
can effectively overcome this problem. For example, Liu 
et al. prepared three-dimensional (3D) hybrid aerogel [140] 
(Fig. 5a) from MXene  (Ti3C2Tx), reduced graphite oxide 
(rGO) nanosheets, and ultrafine CuO nanoparticles. From 
the obtained 3D MXene/rGO/CuO aerogel, high pyruvic 
sensing performance was demonstrated at ambient tem-
perature (Fig. 5b). Response of the sensor to 100 ppm of 
acetone was 52.09% (RT) (Fig. 5b), with a response time 
of ~ 6.5 s and a recovery time of ~ 7.5 s (Fig. 5c), demonstrat-
ing excellent reproducibility and selectivity. In 2020, Lee 
et al. [139] developed a  Ti3C2Tx MXene/graphene hybrid 
fiber wearable gas sensor without a metal binder through a 
wet spinning process (Fig. 5d). The bandwidth capacity of 
the composite material has increased from 1.05 to 1.57 eV, 
while the fiber properties of the composite material enhance 
flexibility and response to  NH3. A moderate response (6.8% 
at 50 ppm  NH3) was displayed by the composites (Fig. 5e), 
with this being 7.9 and 4.7 times more responsive than that 
of pure MXenes and rGO, respectively (Fig. 5f).

Wang et al. [141] proposed an ionic conductive composite 
film, which is composed of reduced graphite oxide (rGO), 
nitrogen doped MXene  Ti3C2Tx (N-MXene), and titanium 
oxide  (TiO2) (Fig. 5g), and detects 4–40 ppm formaldehyde 
HCHO vapor at room temperature (20 °C) and humidity. 
In various humidity conditions toward 4 ppm HCHO, the 
ternary sensor achieved an average reversible response of 

26% at 54% RH (Fig. 5h). In addition, it also shows good 
repeatability, long-term stability, and selectivity (Fig. 5i). 
The excellent gas sensing performance of rGO nanosheets 
can be attributed to three aspects: firstly, in humid environ-
ments, rGO nanosheets serve as a good conductive platform 
for transporting and collecting charge carriers; second, the 
layered N-MXene facilitates the co-sorption and spreading 
of HCHO and water moieties; third, the  TiO2 nanoparticles 
provide abundant resorption sites, which promote decompo-
sition of the sorbed water.

In the wet  CO2 sensing process of composite materials, 
few rGO nanosheets serve as a good conductive platform 
for transferring and collecting load carrier. The layered 
N-MXene provides further reactive sites to co-adsorb carbon 
dioxide and water, thus facilitating reactions involving water. 
The abundant amino groups in PEI polymers facilitate the 
binding of  CO2 molecules, leading to significant changes in 
charge carrier density through proton conduction behavior 
[98, 168–173]. However, MXene composite material sensors 
with graphene or graphene derivatives are mostly subjected 
to multi gas testing, with no targeted detection of a single 
gas, and there is little research on humidity sensing [128, 
174–184].

4.2  MXene/Metal Oxide

Metal oxides represent the oldest and most widely used 
sensing material and can be used in a variety of applica-
tions due to the high specific surface area, ease of fab-
rication, ease of functionalization, and extremely high 
sensitivity to a broad range of gases/volatile organic 
compounds. The sensing mechanism of metal oxides is 
mainly due to the changes in resistance caused by pre 
adsorbed oxygen species (oxygen molecules  (O2), lattice 
oxygen < including surface lattice oxygen and bulk lattice 
oxygen >  (O2−), atomic adsorption of oxygen  (O−), molec-
ular adsorption of oxygen  (O2

−)), and surface reactions 
of gas molecules [185]. Due to the high dependence of 
oxygen ionization on operating temperature, this mecha-
nism typically requires metal oxide gas sensors to oper-
ate at relatively high temperatures, which is also the main 
drawback of metal oxide gas sensors [53, 145–147, 186]. 
However, research data suggests that the mixture of metal 
oxides with 2D MXenes has a more robust gas/volatile 
organic compound sensing response, and the emergence 
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Table 3  Gas/VOC/humidity sensor based on MXene-composite

Classification MXene-based 
composite

Target gas Test range Carrier gas Sensitivity Response 
time  (tRes.)

Recovery 
time  (tRec.)

Operating 
temperature

References

MXene/rGO Ti3C2Tx/rGO fibers NH3 10–500 ppm Dry air 6.77% 
(50 ppm)

 > 10 min  > 25 min RT [139]

Ti3C2Tx/rGO/CuO 
aerogel

Acetone 
 (CH3COCH3)

10–500 ppm Dry air 52.09% 
(100 ppm)

6.5 s 7.5 s RT [140]

rGO/N-MXene/
TiO2 film

Formaldehyde 
(HCHO)

4–40 ppm Wet air 26% (4 ppm) 27.6 s 4.8 s 20 °C [141]

rGO/N-MXene/
PEI film

CO2 8–3000 ppm Wet air 1.3% (8 ppm) 8.8 min 9 min 20 °C [142]

Ti3C2Tx/TiO2-
spaced rGO

NO2 0.05–20 ppm Wet air 165% (1 ppm) 180 s 260 s RT [143]

MXene/
metallic 
oxide

TiO2/Ti3C2Tx 
bilayer film

NH3 0.5–10 ppm Wet air 3.1% (10 ppm) 33 s 277 s 25 °C [144]

CuO/Ti3C2Tx 
MXene hybrids

Toluene 
 (C6H5CH3)

10–50 ppm Wet air 11.4% 
(50 ppm)

270 s 10 s 250 °C [145]

Co3O4@PEI/
Ti3C2Tx

NOx 0.03–100 ppm Wet air 27.9% 
(100 ppm)

 < 2 s 73 s RT [146]

MXene sphere/ZnO NO2 5–100 ppm Wet air 41% (100 ppm) 34 s 103 s 25 °C [53]
MXene/Co3O4 HCHO 0.01–10 ppm Wet air 9.2% (10 ppm) 83 s 5 s 25°C [147]
W18O49/Ti3C2Tx CH3COCH3 0.17–20 ppm Wet air 11.6% 

(20 ppm)
5.6 s 6 s 200–400 °C [45]

partially oxidized 
 Ti3C2Tx

Organic analytes 2 ppm Dry air 40% (ethanol), 
110% (meth-
anol, 100% 
(isopropyl 
alcohol), 
and 180% 
(acetone)

– – 20–350 °C [148]

Ti3C2Tx//TiO2 Ethanol  (C2H5OH) 10–800 ppm Dry air 22.47% 
(100 ppm)

– – RT [149]

TiO2/Ti2CTx NH3 1–100 ppm Dry air  ~ 0.4% 
(0.1 ppm)

– – RT [150]

Ti3C2Tx/WO3 NH3 1–5 ppm Wet air 22.3% (1 ppm) 119 s 228 s RT [151]
MXene/SnO2 NH3 0.5–100 ppm Wet air 40% (50 ppm) 36 s 44 s RT [152]
TiO2/Ti3C2Tx NO2 0.125–5 ppm Dry air  ~ 37% (5 ppm) – – RT [44]
SnO-SnO2/Ti3C2Tx CH3COCH3 10–100 ppm Dry air 12.1 (100 ppm) 18 s 9 s RT [153]
Ti3C2Tx-TiO2 Hexanal 10–40 ppm Dry air  ~ 3.4% 

(10 ppm)
293 s 461 s RT [154]

ɑ-Fe2O3/Ti3C2Tx CH3COCH3 5–200 ppm Wet air 16.6% (5 ppm) 5 s 5 s RT [155]
In2O3/Ti3C2Tx CH3OH 5–100 ppm Wet air 29.6% (5 ppm) 6.5 s 3.5 s RT [156]
ZnO/Ti3C2Tx NO2 5, 10 ppm Wet air 54% (10 ppm) – – RT [157]
ZnSnO3/MXene HCHO 5–100 ppm Wet air 62.4% (5 ppm) 6.2 s 5.1 s RT [158]
Ti3C2/TiO2 nanow-

ires
Humidity 7%–97% RH Wet air 280 PF%RH 2 s 0.5 s RT [159]

Ti3C2Tx/K2Ti4O9 Humidity 11%–95%RH Wet air 1.49% 
(95%RH)

65.2 s 84.8 s RT [160]

MXene/
TMDs

MoS2/Ti3C2Tx NO2 10, 20 ppm Wet air 40.1% 
(20 ppm)

525 s 155 s RT [161]

Ti3C2Tx/WSe2 C2H5OH 1–40 ppm Wet air  ~ 9% (40 ppm) 9.7 s 6.6 s RT [162]
MXene/MOF Ti3C2Tx/Cu MOF NH3 1–100 ppm Dry air 24.8% 

(100 ppm)
45 s 29 s RT [163]

Co-TCPP(Fe)/
Ti3C2Tx

NO2 10 ppm Dry air 2.0% (10 ppm) 95 s 15 s RT [164]

MXene/poly-
mer

Polyanline/Ti3C2Tx NH3 0.5–50 ppm Wet air 1.7% (10 ppm) – – 20 °C [165]

cationic polyacryla-
mide (CPAM)/
Ti3C2Tx

NH3 50–200 ppm Dry air 4.7% 
(200 ppm)

12.7 s 14.6 s RT [166]



Nano-Micro Lett.          (2024) 16:209  Page 11 of 42   209 

1 3

of this complex greatly overcomes the low selectivity and 
high operating temperature limitations of pure metal oxide 
sensing (Fig. 6).

Titanium dioxide  (TiO2) is an ideal material for gas sensor 
preparation due to its pollution-free properties, ability to gen-
erate photogenerated electrons when stimulated, and simple 
preparation process. However,  TiO2-based gas sensors also 
have some drawbacks, such as poor sensing performance, 
long response time, and recovery time. In 2019, Tai [144] 
designed a gas sensing element based on a  TiO2/Ti3C2Tx 
bilayer film (Fig. 7a). According to the results, when com-
pared with the pure  Ti3C2Tx sensor, this  TiO2/Ti3C2TX sensor 
exhibited a larger recognition value (1.63 times) with shorter 
response/recovery time (0.65/0.52 times) compared to the 
pure  Ti3C2TX sensor for 10 ppm  NH3 at room temperature of 
25 °C (60.8% relative humidity) (Fig. 7b, c). Choiet et al. [44] 
covered the amplification and inductive properties against 

 NO2 by  Ti3C2 through the modulation of the introduction of 
the Schottky barrier (SB) (Fig. 7d), which combines  TiO2 
into conducting MXenes to form a heterogeneous structure. 
The  TiO2/Ti3C2 composite sensor shows a  NO2 sensitivity 
13.7 times higher than the original  Ti3C2 MXene (Fig. 7e), 
while the response of the reducing gas is almost unchanged, 
the reason for this is the highest charge density of  NO2 in 
other interfering VOCs due to the formation and movement 
of SB inside caused by the adsorption of  NO2 molecules, 
together with other interfering VOCs, and as explained in 
the mechanisms of sensing (Fig. 7f, g). Kuang et al. [154] 
successfully prepared  Ti3C2Tx-TiO2 nanocomposites with 
regular morphology using  Ti3C2Tx as the titanium source 
through a simple one-step hydrothermal synthesis method 
(Fig. 7h). Due to the formation of interface heterojunctions 
and modulation of carrier density, the detection response of 
 Ti3C2Tx-TiO2 sensors to various VOCs at room temperature 

Table 3  (continued)

Classification MXene-based 
composite

Target gas Test range Carrier gas Sensitivity Response 
time  (tRes.)

Recovery 
time  (tRec.)

Operating 
temperature

References

PEDOT:PSS/
MXene

NH3 10–1000 ppm Dry air 36.6% 
(100 ppm)

116 s 40 s 27 °C [103]

MXene/polyaniline/
bacterial (MXene/
PANI/BC)

NH3 2.5–12.5 ppm Dry air 56.63% 
(7.5 ppm)

– – RT [101]

PANI/Ti3C2Tx C2H5OH 50–200 ppm Dry air 27.4% 
(150 ppm)

0.4 s 0.5 s RT [105]

Ti3C2Tx/
PEDOT:PSS

CH3OH 180–500 ppm Dry air 36.6% 
(100 ppm)

116 s 40 s 27 °C [104]

Ti3C2Tx/polyure-
thane (PU)

CH3COCH3 0.05–50 ppm Dry air 0.25% (50 ppb) 148 -190 s 164 -240 s RT [102]

MXene/polyelec-
trolyte

Humidity 20%–70% RH Wet air 39.5% 110 ms 220 ms RT [100]

poly(vinyl alcohol)/
Ti3C2Tx(PVA/
MXene)

Humidity 11%–97% RH Wet air 40% (90% RH) 0.9 s 6.3 s RT [99]

Ti3C2Tx/chitosan 
(CS)

Humidity 14%–73% RH Wet air  ~ 0.16% (73% 
RH)

– – RT [113]

Ti3C2Tx/chitosan 
(MCQMS)

Humidity 1%–98% RH Wet air 317% (90% 
RH)

0.75 s 1.6 s RT [112]

Others Ti3C2/Ag Humidity 35%–95% RH Wet air 106,800% 80 ms 120 ms RT [111]
Ti3C2Tx/Ag NWs Humidity 57% RH Wet air  ~ 3% 5 s 80 s 20°C [108]
Ti3C2Tx-K/Mg Humidity 0%–85% RH Wet air  ~ 8% RH – – 27°C [110]
TiOF2@Ti3C2Tx Humidity 11%–95% RH Wet air 39.5% 16 s 20 s RT [98]
Ti3C2Tx@Pb CNC H2 0.5%–40% Dry air 23.0 ± 4.0% 

(4%)
(37 ± 7)s (161 ± 23) s RT [167]

Ni(OH)2/Ti3C2Tx NH3 1–80 ppm Wet air 6.2% (10 ppm) 78 s  ~ 500 s RT [106]
Ti3C2Tx/flfluoro-

alkylsilane 
(FOTS)

C2H5OH 5–120 ppm Wet air 14% (120 ppm) 39 s 139 s RT [109]

Fe2(MoO4)3@
MXene

n-butanol 100 ppm Wet air 43.1% 18 s 24 s 120 °C [107]
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is enhanced by about 1.5–12.6 times compared to pure 
MXene sensors. In addition, this nanocomposite sensor has 
a better response to hexanal (the  Ti3C2Tx-TiO2 sensor has 
a gas response of approximately 3.4% to 10 ppm hexanal).

In addition to the hydrothermal partial oxidation of 
 Ti3C2Tx mentioned above, researchers have also prepared 
partially oxidized  Ti3C2Tx by heat treatment at 350 °C [148] 
(Fig. 8a–g) and microwave-activated oxygen plasma [149] 
treatment (Fig. 8h). Sun et al. [150] investigated the pro-
cessing-dependent sensing behavior of  Ti2CTx (LiF/HCl), 
 Ti2CTx (HF), and  TiO2/Ti2CTx (LiF/HCl) at room tempera-
ture under 365 nm ultraviolet light (Fig. 9a, b). In addition, 
the results indicate that  TiO2/Ti2CTx (LiF/HCl) exhibits bet-
ter sensing performance than other samples (Fig. 9c). Since 
it contains abundant oxygen functional groups (-Ox, -(OH)x 

and Ti–O-Ti), providing more  NH3 molecular interactions. 
Li et al. [159] developed a humidity sensor by in situ growth 
of  TiO2 nanowires on two-dimensional (2D)  Ti3C2 MXene 
using alkaline oxidation method (Fig. 9d). They found that 
the sea urchin-like  Ti3C2/TiO2 composites have an order of 
magnitude larger surface area when compared to pure  Ti3C2 
or  TiO2 materials (Fig. 9e) and exhibit documented high 
sensitivity at environments with low thermal relative humid-
ity (RH) (from 7% RH to 33% RH, approximately 280 pF/% 
RH) (Fig. 9f).

CuO exhibits the advantage of wide range response to 
VOCs, but has the drawbacks of small response values, slow 
response/recovery speed, and low durability. For this reason, 
Angga Hermawan et al. [145] reported a simple method to 
prepare CuO-Ti3C2Tx MXene hybrid by self-assembling 

Fig. 5  a Schematic illustration of fabrication process of 3D MXene/rGO/CuO aerogel. b The selectivity for 3D MXene/rGO/CuO aerogel-based 
sensor to different gases of 100 ppm at RT. c Resistance changes of 3D MXene/rGO/CuO aerogel when exposed to 100 ppm acetone at RT. 
Reproduced with permission from Ref. [140]. d Schematic illustration of the spinning process for MXene/GO hybrid fiber. e Comparison of the 
gas response of MXene film, rGO fiber, and MXene/rGO hybrid fiber (40 wt% MXene). f Gas selectivity comparison of rGO fiber and MXene/
rGO hybrid fiber (40 wt% MXene) to various testing gases at concentrations of 50 ppm. Reproduced with permission from Ref. [139]. g Sche-
matic images of IDEs sensor. h Sensing performance of the ternary sensor toward HCHO vapor under 54%RH at 20 °C. i Selectivity investiga-
tion among a series of interference gases under 54%RH at 20 °C. Reproduced with permission from Ref. [141]
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electrostatically (Fig. 10a). CuO-Ti3C2Tx MXene showed a 
better methane gas sensing response  (Rg/Ra) of 11.4 than 
pristine CuO nanoparticles at 250°C for 50 ppm toluene gas 
sensing response nearly five times higher than that of pris-
tine CuO particles for 50 ppm toluene at 250 °C. (Fig. 10b). 
In addition, due to the high conductivity of the metal phase 
in  Ti3C2Tx MXene, the hybridization of CuO with  Ti3C2Tx 
MXene not only improves the response time, but also 
improves selectivity, response (270 s), and recovery time 
(10 s) (Fig. 10c, d).

Sun et al. [146] used simple noncovalent chemical meth-
ods and hydrothermal methods to effectively rivet  Co3O4 
nanocrystals onto functionalized  Ti3C2Tx MXene sheets of 
branched polyethylene imine (PEI), and prepared  Co3O4@
PEI/Ti3C2Tx MXene composite material (Fig. 10e). Sun 
et al. examined the sensing performance of nitrogen oxides 
(consisting of  NO2 and NO) using  Co3O4@PEI/Ti3C2Tx 
(CoPM) complexes and found that CoPM-24 complexes 
exhibited 27.9% response when added at 2.4 mg  Ti3C2Tx 
along with high selectivity and very weak detection limits 
(30 ppb-NOx) (Fig. 10f, g). In 2021, Zhang et al. [147] as 
a high-performance self-powered formaldehyde (HCHO) 

sensor based on MXene/Co3O4 composite was prepared. 
Electricity was supplied through piezoelectric nanogenera-
tors (PENGs) of ZnO/MXene nanowire arrays. p-type metal 
oxide  Co3O4 provided more active sites for formaldehyde 
interactions, thus the MXene/Co3O4 composite exhibited 
good response at room temperature with 9.2% response at 
10 ppm HCOH and low detection limit—0.01 ppm.

In 2019, Sun et al. [187] used a simple solvothermal 
method to grow one-dimensional  W18O49 nanorods in situ 
on the  Ti3C2Tx surface. The  W18O49/Ti3C2Tx composites 
exhibited a high response to low concentrations of ace-
tone (11.6–20 ppm) (Fig. 11a), as well as high selectivity, 
long-term stability, and also a fast response and recovery 
response to very low of acetone (170 ppb) can also be 
detected (Fig. 11b). Physical properties of  NH3 sensing were 
improved by forming heterojunctions and enhancing the 
number of active sites, relative surface area, and pore size 
of pristine  Ti3C2Tx by functionalizing  Ti3C2Tx with  WO3 
nanoparticles by a simple ultrasonic method, as shown in 
Fig. 11c. The resulting  Ti3C2Tx/WO3-50% (weight percent 
of  WO3) sensor exhibited excellent response to  NH3 (22.3% 
at 1 ppm), which was 15.4 times that of the pristine  Ti3C2Tx 

Fig. 6  MXene/metal oxide for gas sensors. Reproduced with permission from Refs. [44, 146, 155, 158, 187]
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sensor (1.54% at 1 ppm) with no electrical resistance drift 
(Fig. 11d) [151].

In addition to this, He et al. [152] successfully synthesized 
two-dimensional (2D) MXene modified by tin dioxide nano-
particles for gas sensing detection as well by hydrothermal 

Fig. 7  a Structure of  TiO2/Ti3C2Tx Gas Sensor. b Normalized response recovery curves of the  TiO2/Ti3C2Tx,  Ti3C2Tx and  TiO2 gas sensors to 
10 ppm  NH3. c Response/recovery times of the  Ti3C2Tx and  TiO2/Ti3C2Tx gas sensors. Reproduced with permission from Ref. [144]. d A dia-
gram of the composition process of  TiO2/Ti3C2 MXene sensor. e Experimental real-time gas response curve of  TiO2/Ti3C2 depending on  NO2 
concentration. f and g Suspension regime of  NO2 gas by  Ti3C2 and  TiO2/TiO2/Ti3C2 thin films. Reproduced with permission from Ref. [44]. h 
Schematic diagram illustrating the process of the  Ti3C2Tx-TiO2 nanocomposites preparation and gas sensing device fabrication. Reproduced with 
permission from Ref. [154]
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method. Wang et al. [153] successfully synthesized SnO-
SnO2 (p–n junction) and  Ti3C2Tx MXene nanocomposites 
for gas sensing by a one-step hydrothermal method. Zinc 
oxide (ZnO) has long been used as a gas detector. Although 
it has good response to various gases, high operating tem-
perature limits the widespread application as a gas sensing 
material. Qui et al. [157] ZnO/Ti3C2Tx MXene nanocom-
posite composed of 2D multilayer MXene and 1D ZnO 
nanoparticles prepared a room temperature toxic gas sensor 
(Fig. 12a). The nanocomposite material exhibits enhanced 
response and recovery behavior to toxic gases, superior to 

pure  Ti3C2Tx MXene and pure ZnO. Its gas sensing principle 
is shown in Fig. 12b. Under the irradiation of the sun,  ZnSO3 
nanocube and layered  Ti3C2Tx MXene were synthesized by 
simple static self-assembly to synthesize  ZnSO3/Ti3C2Tx 
MXene nanocomposites (Fig. 12c). Sima et al. [158] found 
that the  ZnSO3/Ti3C2Tx MXene nanocomposite-based sen-
sor displayed significant selectivity for formaldehyde, with 
high response (194.7% to 100 ppm and 62.4% to 5 ppm) 
(Fig. 12d), and rapid response/recovery times (6.2/5.1 s at 
100 ppm formaldehyde) (Fig. 12e), and these tests were 

Fig. 8  Characterization of gas sensing in partially aluminized  Ti3C2Tx MXene films on a multisensor chip. a Stabilization of the aqueous solu-
tion of layered MXene in photographic form. b Diagram of the construction of a single-layer  Ti3C2Tx MXene sheet. c Photographs of an AFM 
image of a  Ti3C2Tx MXene flake on Si/SiO2, the scale bar is 1 μm m. d Multi-electrode chip scheme for MXene sheet membrane produced by 
drop-in casting method. e SEM image of the MXene films overlaying the area in contact between the platinum alloy electrode and the Si/SiO2 
backing. Scale bar is 1 μm. f MXene partial conductivity G(t) variation, relative to conductivity in air (in dry air at 350 °C with acetone, isopro-
pyl alcohol (IPA), ethanol and methanol dosed sequentially at 2–10 ppm). g Illustration: dependence of chemical reactions, S = ΔG/Gair, average 
of all MXene sensor elements for organic vapor focus on a chip; error bands indicate the fluctuation of resistance of the entire multisensor array. 
Reproduced with permission from Ref. [148]. h Schematic diagram of the possible gas sensing mechanism of  Ti3C2Tx MXene. Reproduced with 
permission from Ref [149]
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conducted at RT. Figure 12f shows the gas sensing scheme 
of the  ZnSO3/Ti3C2Tx MXene laminate.

Different research groups have conducted extensive 
research on gas sensing performance using pure  Ti3C2Tx 
and its complexes with different metal oxides, such as 
 V2O5 [45], �-Fe2O3 [155],  In2O3 [156], and  K2Ti4O9 [160]. 

Liu [155] successfully prepared heterogeneous composite 
materials of �-Fe2O3 and  Ti3C2Tx MXene using a simple 
hydrothermal method (Fig, 13a-c), and characterized their 
morphology and microstructure through various char-
acterization methods (Fig. 13b–f). The results indicate 
that a size of approximately 250 nm wide was prepared 

Fig. 9  a Preparation process of  Ti2CTx (LiF/HCl) nanosheets (Route 1) and  Ti2CTx (HF) nanosheets (Route 2) is schematically shown. b Dia-
gram of the fabrication of the  TiO2/Ti2CTx (LiF/HCl) blend nanosheets. c Regularized resistance changes of each sensor at various  NH3 levels. 
Reproduced with permission from Ref. [150]. d  Ti3C2/TiO2-nanowires material preparation process: HF etching, liquid-phase exfoliation, alkali 
oxidation, and other methods. e BET surface area of  Ti3C2 and  Ti3C2/TiO2. f Complex impedance plots of  Ti3C2/TiO2 composite film at 7%-23% 
RH. Reproduced with permission from Ref. [159]
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�-Fe2O3 nanocube and uniformly distributed on the sur-
face of  Ti3C2Tx MXene nanosheets. The results indicate 
that a size of approximately 250 nm wide was prepared �
-Fe2O3 nanocube and uniformly distributed on the surface 
of  Ti3C2Tx MXene nanosheets. The gas sensitivity test 
results show that compared with other typical gases, the 
sensor based on �-Fe2O3/Ti3C2Tx MXene composite mate-
rial exhibits excellent selectivity toward acetone, and very 
favorable response to 5 ppm acetone: 16.6% (Fig. 13g), 
high rate of response and recovery: 5/5  s (Fig.  13h), 

excellent linearity, and significant repeatability at room 
temperature (RT) (Fig. 13i) [160].

Taken together, as shown in Table 3,  TiO2 is the most 
commonly used metal oxide composition to assist MXenes 
in detecting reducing gases at room temperature. For the 
response of  NH3 gas, MXenes, and tungsten tin oxides 
showed the best response values, but the lower response limit 
did not change significantly, and the response recovery time 
needs further investigation [164, 192]. On the other hand, 
we found that  Co3O4 and ZnO are suitable support materi-
als for the detection of oxidizing gases using MXenes. In 

Fig. 10  a Schematic Representation of a Facile Preparation of CuO nanoparticles/Ti3C2Tx Hybrid Heterostructures and Gas Sensor Device 
Fabrication. b Gas sensing response of CuO,  Ti3C2Tx MXene, and CuO/Ti3C2Tx MXene tested at different working temperatures. c Response/
recovery times. d Selectivity of CuO/Ti3C2Tx-30 wt% to 50 ppm of tested gas. Reproduced with permission from Ref. [145]. e Schematic illus-
tration of the  Co3O4@PEI/Ti3C2Tx MXene composites. f CoPM-24 sensor selectivity study under the influence of the presence of various gases 
at 100 ppm. g Momentary feedback of CoPM-24  (Co3O4@PEI/Ti3C2Tx) sensor to 100–0.03 ppm  NOx. Reproduced with permission from Ref. 
[146]
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the presence of  In2O3 and �-Fe2O3, other reducing volatile 
organic compounds, such as methanol and acetone, were bet-
ter perceived, respectively.

4.3  MXene/TMDs

Two-dimensional chalcogenides are two-dimensional mate-
rials with unique structures, excellent mechanical, electri-
cal, optical properties, and low energy consumption. It is a 

Fig. 11  a Image demonstrating the mechanism of acetone sensing by  W18O49/Ti3C2Tx nanocomposites. b Image of instantaneous response 
curves of  W18O49/Ti3C2Tx-based sensors in the range of acetone concentrations from 0.17 to 500 ppm. Reproduced with permission from Ref. 
[187]. c Mechanisms of sensing of  NH3 by  Ti3C2Tx/WO3-50% of composites. d Different amounts of  WO3 of the composite sensor in response 
behavior to 1 ppm  NH3 at room temperature. Reproduced with permission from Ref. [151]
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well-explored sensing application material. However, for gas/
VOC sensing, the research on the composite materials of 2D 
chalcogenides and MXene is still a rarely explored field. So 
far, there are only two reports on the combination of MXene 
and sulfides for gas sensing. Firstly, Qui et al. [161] prepared 
 MoS2/Ti3C2Tx heterostructures with interconnected net-
work nanostructures through a simple hydrothermal method 
(Fig. 14a). The synthesized  MoS2/Ti3C2Tx heterostructure 
exhibits significant lattice matching (Fig. 14b), where verti-
cally arranged  MoS2 nanosheets grow on  Ti3C2Tx MXene and 

have a large specific surface area. The obtained gas sensor 
exhibits very high sensitivity and selectivity to  NO2 gas expo-
sure, reaching up to 25% at 10 ppm, as well as rapid recovery 
and long-term stability (Fig. 14c, d). Due to the large number 
of Mo active sites and the conductivity of  Ti3C2Tx MXene, 
which can accelerate electron movement and excellent het-
erojunction interface contact, the presented structure exhibits 
enhanced  NO2 sensing activity. Secondly, Chen et al. [162] 
reported on the  Ti3C2TX/WSe2 nanohybrid material, which 
was prepared through simple surface treatment and peel-based 

Fig. 12  a Schematic synthesis procedure of ZnO/Ti3C2Tx heterostructure. b Schematic  NO2-sensing reaction mechanism of ZnO/Ti3C2Tx nano-
composite.  Reproduced with permission from Ref. [157]. c Schematic of fabrication process of  (c1)  ZnSnO3 nanocube,  (c2) layered  Ti3C2Tx 
MXene and  (c3)  ZnSnO3/Ti3C2Tx MXene composites. d Selective curve of  ZnSnO3/Ti3C2Tx MXene composites to 100  ppm different gas at 
room temperature. e Response performance of  ZnSnO3/Ti3C2Tx MXene composites to 100 ppm form aldehyde at room temperature. f Schematic 
of gas sensing mechanism of  ZnSnO3/Ti3C2Tx MXene composites. Reproduced with permission from Ref. [158]
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process (Fig. 14e), and combined as a sensing material into 
inkjet printing and wireless operation sensors (Fig. 14f). The 
sensing measurement has excellent repeatability and reproduc-
ibility. The energy band diagram of the  Ti3C2Tx/WSe2 sen-
sor in the presence of ethanol shows n-type sensing behavior 
and Schottky barrier modulation (Fig. 14g). Compared with 
sensors made from raw  Ti3C2Tx and raw  WSe2, the  Ti3C2Tx/
WSe2 hybrid sensor exhibits a 12-fold improvement in ethanol 
sensitivity, low electrical noise, sound selectivity, and ultra-fast 
response/recovery characteristics (Fig. 14h). Table 3 summa-
rizes a detailed overview of sensors for MXene and TMDs 
composite materials.

4.4  MXene/MOF

In recent decades, metal organic frameworks (MOFs) have 
developed rapidly and their popularity has not decreased, 
making them a hot topic in the field of materials. How-
ever, the conductive MOF obtained by combining MOF 
and MXene breaks the shackles of MOF materials that are 
almost non-conductive, perfectly combines the controllable 
structure of organic materials and the long-term order of 
inorganic materials, plus the unique high electron mobility, 
conductive MOF can be described as a favorite, and is also 
one of the most potential materials in gas sensing applica-
tions [163], such as Chang et al. [164] designing and pre-
paring a rod-shaped porphyrin based metal oxide (Co TCP 
(Fe)) and MXene  (Ti3C2Tx) through hydrogen bonding to 

Fig. 13  Illustration of the preparation process of a positively charged α-Fe2O3 nanocubes, b Sheet-like  Ti3C2Tx MXene and c α-Fe2O3/Ti3C2Tx 
MXene composites. d SEM images of α-Fe2O3/Ti3C2Tx MXene composites. e TEM image. f HRTEM image of the α-Fe2O3/Ti3C2Tx MXene 
composites. Reproduced with permission from Ref. [155]. g Selective property of the sensor based on α-Fe2O3/Ti3C2Tx MXene composites to 
5 ppm of various target gases at room temperature. h The real-time resistance measurement of α-Fe2O3/Ti3C2Tx MXene composite sensor toward 
acetone vapor at RT. i Long-term stability of the α-Fe2O3/Ti3C2Tx MXene-based sensor for 5 ppm acetone. Reproduced with permission from 
Ref. [160]
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form a chemically resistant NO sensing hybrid (Co-TCPP 
(Fe)/Ti3C2Tx) (Fig. 15a). The sensor based on Co TCP (Fe)/
Ti3C2Tx shows excellent NO sensing performance at room 
temperature (Fig. 15b), including high response (= 2.0, 
10 ppm) (Fig. 15c), reliable repeatability, high selectivity, 
low actual detection limit (pLOD, 200 ppb), and rapid room 
temperature NO sensing response/recovery speed (95/15 s, 
10 ppm) (Fig. 15d).

4.5  MXene/Polymer

Polymers have excellent flexibility, favorable sensitivity, 
appropriate electrical conductivity, low cost, a large num-
ber of organic groups to interact with the gas on the sur-
face, light weight, and low reaction temperature, making 
them suitable for gaseous/VOC sensing applications when 
mixed with MXenes. MXene/polymer composite sensors 
are used to identify ammonia [101, 103, 165, 166], etha-
nol [32, 105], methanol [33, 104], acetone [31, 102], and 
humidity [99, 100, 112, 113] for wear and tear [189–194]. 
With respect to ammonia identification, the original 
MXene-based sensor shows excellent  NH3 sensing charac-
teristics, but ammonia has very high adsorption energy and 
 NH3 is difficult to partition from the MXene screen during 
recovery, and demonstrates extended recognition time as 
well as wandering of the baseline resistance. To surmount 
these limitations, Li et al. [165] developed in situ a flexible 
chemorepulsive gas sensor based on a hybrid polyaniline 
(PANI)/Ti3C2Tx sensitive layer for tracking ammonia vola-
tilization out of agriculture using self-assembled method 
in situ (Fig. 16a). The sensor exhibits excellent  NH3 sens-
ing performance over a temperature range of 10–40°C at 
20%–80% relative humidity (RH) (sensing response to 
10 ppm ammonia peaks at 4.7 at 40% RH, which is almost 
three times higher than in dry air (~ 1.6)) (Fig. 16b–d). 
Zhao et al. [105] also used over-PANI, via a low-tempera-
ture in situ polymerization method to rationally modified 
PANI particles coated with  Ti3C2Tx nanosheets (Fig. 17a, 
b). This evoked remarkable detection sensitivity, a rapid 
response/recovery rate and mechanistic stability as well 
at room temperature. A year later, Zhao et al. [166] also 
developed room temperature nanocomposites based on 2D 
MXenes materials and cationic polyacrylamide (CPAM) 
(Fig. 17c) with high gas responsiveness and flexibility 
aimed at building high-performance ammonia sensors.

Conductive polymers-3,4-ethylenedioxythiophene 
(EDOT) and poly(4-styrenesulfonate) (PSS) are also com-
monly used to composite with MXene. Jin et al. [103] used 
a dip coating technique to make a gas sensor from the 
resulting PEDOT:PSS/MXene composite (Fig. 18a).  NH3 
at room temperature demonstrated a strong gas response 
of 36.6% to 100 ppm  NH3 with recovery and response 
times of 116 and 40 s. Furthermore, the hybrid sensor pre-
sented stronger sensitivity performance compared to pure 
PEDOT:PSS and  Ti3C2Tx MXene-based sensors, evidenc-
ing that the PEDOT:PSS copolymer and  Ti3C2Tx MXene 
two-dimensional ingredients have a synergistic effect 
on each other. In addition to showing a high response to 
ammonia gas, it also responded well to other gases, e.g., 
Wang et al. [104] used a 4:1 mixture of PEDOT:PSS and 
 Ti3C2Tx to prepare a methanol gas sensor (Fig. 18b, c), 
where the reaction rate of 5.54 was high for the largest 
reaction and the second largest reaction tested at room 
temperature when compared to pure PEDOT:PSS and pure 
 Ti3C2Tx.

For humidity sensing, composites of polymers with 
MXene are excellent materials. The synergistic effect of 
chitosan-modified  Ti3C2Tx exhibited remarkable perfor-
mance, enhancing the electrical response to  H2O mol-
ecules. Inspired by the structure of onions (Fig. 19a), Li 
and colleagues [112] synthesized ion-excited MXene/chi-
tosan–quercetin multilayer membranes (MCQMs) using a 
layering-by-layer assembly approach (Fig, 19b, c) for which 
strong interactions to the molecules were found (Fig. 19d). 
The monolayer pair exhibited the highest resistance in 
MCQMs, with improved conductivity and reproducibility 
as the number of layers increased, and the sensor exhibited 
an ultra-high responsiveness (317% at 90% RH), a wide field 
of detection, and praiseworthy response and recovery speeds 
(0.75 and 1.6 s at 90% RH) (Fig. 19e–g). For true breathing 
studies, An et al. [110] described the mechanism of aque-
ous adsorption of a multilayer component made of MXene 
microsheets with polyelectrolytes (Fig. 19h) intended for 
super-fast humidity sensing (Fig. 19i–k), and they showed 
that MXene/polyelectrolyte multilayers prepared using layer-
by-layer (LbL) components exhibited response and recovery 
times exceeding those of most humidity sensors (Fig. 19l, 
m).

In addition, comparing all MXene/polymer gas sensing 
materials in Table 3, it was found that among all reported 
polymers, PEDOT: PSS and polyaniline were the most 
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Fig. 14  a Schematic illustrating the synthesis process of the  MoS2/Ti3C2Tx heterostructure from the  Ti3AlC2 MAX phase. b HRTEM images 
of the  MoS2/Ti3C2Tx heterostructure. c Comparison of responses of MT2 sample to various gases at 10 ppm concentration. d Cyclic responses 
of MT2 to 10 and 20 ppm  NO2 gas. Reproduced with permission from Ref. [161]. e Schematic illustration of preparation processes for  Ti3C2Tx/
WSe2 nanohybrids. f Schematic illustration of inkjet-printed gas sensors in detection of volatile organic compounds with a wireless monitoring 
system. g Comparison of gas response as a function of ethanol gas concentrations for  Ti3C2Tx and  Ti3C2Tx/WSe2 sensors. h Selectivity test of 
the  Ti3C2Tx and  Ti3C2Tx/WSe2 sensors upon exposure to various VOCs at 40 ppm. Reproduced with permission from Ref. [162]
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suitable for improving  NH3 sensing at room temperature 
together with MXenes. The biopolymer cellulose compos-
ite with MXenes  (Ti3C2Tx/PANI/bacterial cellulose) was 
the most suitable for humidity sensing [195–208]. The main 
advantages of polymer doping with MXene are the improved 
selectivity and sensitivity of MXene, the disadvantages of 
which are poor stability and more stringent environmental 
requirements during measurements [148, 209–215].

4.6  Other Materials

Li et al. [111] fabricated a transparent mobile hygrom-
eter using an inkjet printing technique, using a  Ti3C2/Ag 
blend as a humidity-sensitive membrane and polydiallyldi-
methylammonium chloride-based (PDDA) as an adhesive 
barrier (Fig. 20a). The sensor has ultra-high sensitivity 
(106 ± 800%) (Fig. 20d), fast responsiveness (80 ms), and 
excellent resistance to bending (Fig. 20c, d). Liu et  al. 
[105] reported a vacuum-assisted layer-by-layer assembly 

Fig. 15  a Synthesis process of Co-TCPP(Fe),  Ti3C2Tx, and Co-TCPP(Fe)/Ti3C2Tx. b Schematic diagram of the sensing mechanism of the Co-
TCPP(Fe)/Ti3C2Tx-20 toward NO. c Selectivity of the sensor to various gases at concentrations of 10 and 20 ppm. d Real-time response–recov-
ery curve of the Co-TCPP(Fe)/Ti3C2Tx-20 based sensor toward 10 ppm NO at room temperature. Reproduced with permission from Ref. [164]
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technique (Fig. 20e) for conformal deposition of conduc-
tive materials on textiles (Fig. 20f, g), resulting in a leaf 
like nanostructure composed of silver nanowires (AgNWs) 
as high conductivity skeletons (veins) and transition metal 
carbide/carbon nitride (MXene) nanosheets as thin lay-
ers. Having a highly sensitive humidity response (57% 
RH) (Fig. 20h), Zhu et al. [97] demonstrated a new paper 
thin-film  H2 sensor using  Ti3C2Tx MXene nanosheets and 

palladium colloidal nanoclusters (Pb CNC) as activators. 
The MXene@Pd CNC paper film is easily prepared through 
a vacuum filtration process based on a fully colloidal solu-
tion (Fig. 21a). The paper film is flexible, lightweight, and 
has a dense, shiny surface. The obtained MXene@Pd CNC 
thin-film sensor exhibits moderate  H2 response at room tem-
perature in a flat or curved state (Fig. 21b). Specifically, 
MXene@Pd CNC thin-film sensor provides a response time 

Fig. 16  a Application scenarios of PANI/Ti3C2Tx hybrid sensitive film-based flexible  NH3 sensor for ammonia volatilization monitoring in 
agriculture. b Selectivity of the hybrid sensor to  NH3 and other interference gases in agricultural fields at room temperature. c Moisture dynamic 
response of the  NH3 sensing performance of PANI/Ti3C2Tx hybrid sensitive films. d Dynamic sensing response of the hybrid sensor toward 
10 ppm  NH3 in the range of 10–40 °C at dry air and 60% RH. Reproduced with permission from Ref. [165]
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of (32 ± 7)s and a sensitivity of S = (23.0 ± 4.0)% ± 4%  H2 
(Fig. 21c). In addition, the MXene@Pd CNC sensor can per-
form "in situ mode"  H2 detection directly along a paper film 
of the required size. Intense  H2 entrapment in the ultrafine 
palladium carbon nanotube lattice alters the work function 
and leads to MXene’s electron codoping, explaining the 
underlying regime of gas induction (Fig. 21d). Muckleyet 

et al. [110] reported on ion intercalated MXenes  (Ti3C2-K 
and  Ti3C2-Mg) for humidity sensing (RT). Ion embedding 
increases the spacing between MXene layers and absorbs 
 H2O molecules between the layers (Fig. 21e). The conclu-
sion drawn from neutron scattering combined with theo-
retical calculations is that  K+and  Mg2+ ions cause each ion 
to embed 2 and 5  H2O molecules, respectively, indicating 

Fig. 17  a A diagram of the composite synthesis of PANI/Ti3C2Tx nanocomposite, which includes the peeling process of  Ti3AlC2 and the con-
solidation process of ANI. b Sketch of the Inter-digital polarization of the electrodes shown before and after plating PANI/Ti3C2Tx nanocom-
posites. Reproduced with permission from Ref. [105]. c Synthesis scheme of CPAM/Ti3C2Tx nanocomposites, including the etching process for 
 Ti3AlC2 and composite process of CPAM and  Ti3C2Tx. Reproduced with permission from Ref. [166]
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Fig. 18  a Schematic Illustration for the Synthesis of PEDOT:PSS/MXene Composites and the Fabrication Process of the Composite-Based Gas 
Sensor. Reproduced with permission from Ref. [103]. b  Ti3C2Tx/PEDOT:PSS profile of material and gas sensor manufacturing. c The diagram 
of the experimental setup. Reproduced with permission from Ref. [104]
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an increase in lattice parameters. They also found that the 
weight response of MXene to water is 10 times faster than 
their electrical response, indicating that the expansion/con-
traction of channels between MXene layers caused by  H2O 
leads to the capture of  H2O molecules as depletion charge 
dopants (Fig. 21f–i).

Within other studies, the investigators tried to improve 
the sampling performance by doping iron molybdate 
 (Fe2(MoO4)3) [107], Ni(OH)2 [106] and  Ti3C2Tx MXene 
for  H2 (in room temperature), n-butanol (in 120 ℃), and 
 NH3 (in room temperature) sensing, respectively. In another 

study, transition metal fluoride oxide  (TiOF2) was surface 
modified on  Ti3C2Tx and subsequently used as a humidity 
sensor (Fig. 22a–f). By stabilizing the surface end groups, 
the MXene films showed improved reaction area, flexibility, 
and catalytic oxidation (Fig. 22j). In addition, the manufac-
tured sensors exhibit good sensitivity and selectivity when 
exposed to humid environments [98] (Fig. 22h, i). Table 3 
provides a detailed overview of sensors based on MXene 
nanocomposites. In conclusion, insertion of metallic ions 
and precious metals is also an effective way to improve the 
gas sensing performance of the original MXenes [109].

Fig. 19  a Photograph of purple onion scale leaves and schematic diagram of the scale leaves. b Schematic diagram of the MCQMs composed 
of MXene flakes and chitosan–quercetin membranes. c The humidity sensor based on laser-induced interdigitated electrode upon PI substrate. 
Inset shows the photograph of the flexible humidity sensor. d Chitosan and  H2O intercalation induced by MCQMs. e 4-Layer induction response 
to MCQMs. f and g A study of the reaction/recovery time of four layers to MCQM under diverse humidity conditions. Reproduced with permis-
sion from Ref. [112]. h Schematic of the PDAC/MXene assembly. i Schematic illustrations showing the proposed humidity response mechanism 
of the MXene/polyelectrolyte multilayers. Schematic diagrams of MXene/polyelectrolyte multilayers and the corresponding electrical circuit 
models for j low and k high humidity. l and m Comparison of recovery and response times between the MXene/polyelectrolyte multilayers from 
this study and other humidity sensors reported in the literature. Reproduced with permission from Ref. [110]
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The new MXene gas sensor will be the next generation 
of universal sensors for future wearable electronic devices, 
with performance comparable to other 2D material sen-
sors. Through Table 3, it can be clearly found that most 
of the reported 2D MXenes-based composites are suitable 
for sensing at room temperature. Secondly, MXenes-based 
composite materials have been tested for sensing different 

gases/VOCs and have been found to be highly sensitive to 
ammonia, acetone, ethanol, nitrogen dioxide, methane, and 
humidity. On the other hand, the application of MXene-
based composites in gas sensors has advantages and disad-
vantages, as shown in Table 4.

Fig. 20  a Flowsheet for the fabrication of  Ti3C2/Ag-based moisture sensor by inkjet publishing method. b Characteristics of the TA2 response 
and recovery of the sensor exposed to varying relative humidity (RH) conditions. c Duration of response and recovery of sensor TA2. d Appli-
cation of sensor TA2 to various curvature measurement performance. (TA2:  Ti3C2/Ag = 2wt%). Reproduced with permission from Ref. [111]. 
e Schematic illustrating the fabrication of hydrophobic, permeable, and conductive silk textile with a vacuum-assisted layer-by-layer assembly 
approach. f Schematic of the MAF silk detecting sweating humidity. g Humidity response of (MA)nF silk for monitoring human sweating. h 
Sensitivities of electrical resistance change at 57% RH for MAF silk. (MAF: MXene/Ag NWs/POTs). Reproduced with permission from Ref. 
[108]
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5  Gas Sensing Mechanism of MXenes

5.1  MXenes Surface Adsorption Calculation

It has been theoretically proven that MXenes with semicon-
ductor properties  (M2CO2, M = Sc, Ti, Zr, Hf) are highly 
sensitive to  NH3, as shown in Fig. 23a. Xiao et al. [216] cal-
culated and found that after  NH3 was adsorbed as an electron 
donor on  M2CO2, charge transfer mainly occurred between 
the M atom of  M2CO2 and the N atom of  NH3. When MXene 
adsorbed  NH3, the charge of  NH3 molecules was transferred 

to the transition metal atom on the surface of MXene, and 
the conductivity of  Ti2CO2 was significantly improved. They 
also found that desorption of  NH3 can be easily achieved by 
adjusting the electrons injected into  M2CO2, making the  NH3 
sensor reversible [217]. For example, the lowest unoccu-
pied electronic state (LUES) of  Zr2CO2 mainly comes from 
Zr atoms, which means that when an additional electron is 
introduced into  Zr2CO2, the electrons will fill the unoccu-
pied electronic orbitals of Zr atoms. Therefore, the injected 
electrons are mainly distributed on the transition metal, lead-
ing to an increase in the metal bond length and adsorption 

Fig. 21  a Diagrams of the manufacturing of MXene and MXene@Pd CNC films and photographs of the completed Pd CNC and MXene sus-
pending solutions. b Sensitivities and response times of MXene@Pd CNC film sensor to 4%  H2 (left) and the corresponding flexibility show 
(right) under different bending angles. Sensitivities and response times of MXene@Pd CNC film sensor to 4%  H2 after n-time bending cycles 
(left) and one bending cycle show from �=0° to 180° and back to 0°. c MXene@Pd CNC film real-time response/recovery profiles for a wide 
range of high  H2 compositions (0.5 ~ 40 v/v%). d Band diagrams of Pd and MXene before and after being exposed to  H2, and electronic transfer 
between the surface  H2 sorbed and Pd CNC and MXene. Reproduced with permission from Ref. [97]. e Design the structure of MXenes inter-
action between water vapor and ion insertion. f The normalized elastic strength of mature MXene samples measured at 2 K increments over a 
temperature interval of 20 to 300 K. g A representative normalized QENS spectrum was measured at 300 K from the same sample with a repre-
sentative Q = 0.51 Å−1. h Dependence of half-width at half-maximum extracted from the model fit on  Q2 Solids lines are jump diffusion model 
fits. The extracted water diffusion coefficient values are shown. i Elastic time constants for the reactions of Δ R and Δ M during  H2O desorption 
( � ). Reproduced with permission from Ref. [110]
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energy of  NH3-M, resulting in a decrease in the energy of 
 NH3 adsorption on the MXene surface. The research team 
[218] also found that the single-molecule layer  Sc2CO2 has 
good adsorption strength and obvious charge transfer for 
 SO2. The transfer of charge from  SO2 to  Sc2CO2 increases 

the DOS at the Fermi level of  Sc2CO2 and the conductivity 
of  Sc2CO2. By applying external tensile strain or electric 
field, high selectivity, high sensitivity, controllable capture, 
or reversible desorption can be achieved, which predicts that 
 Sc2CO2 has good sensing performance for toxic  SO2 gas, 

Fig. 22  a Scheme for the fabrication of  TiOF2@Ti3C2Tx. b and c The cross section of the monolayer of the  TiOF2@Ti3C2Tx sheet and the 
rainbow map to show the composition distribution in situ. d TEM image of  TiOF2 nanospheres growing on the  Ti3C2Tx substrate. e HRTEM 
image of  TiOF2 nanospheres. f HRTEM image of  Ti3C2 substrate. g Scheme for the hydrolysis and adsorption to synthesize  TiOF2@Ti3C2Tx. h 
Complex impedance property of  TiOF2@Ti3C2Tx at the different RH. i Response and recovery properties of sensors with  TiOF2,  Ti3C2Tx and 
 TiOF2@Ti3C2Tx. j Three samples tested for extended stability at variable humidity. Reproduced with permission from Ref. [98]
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as shown in Fig. 23b, c. The surface functional groups of 
MXenes have an undeniable contribution or impact on gas 
sensing performance. Junkaew et al. [219] used density func-
tional theory (DFT) calculations to investigate the reactivity 
and selectivity of four O-functionalized MXenes, namely 
 M2CO2 (M = Ti, V, Nb, Mo), toward gas molecules. Accord-
ing to the calculated adsorption energy results, among the 11 
gas molecules,  Ti2CO2 and  Nb2CO2 have stronger adsorp-
tion capacity for  NH3, while  Mo2CO2 and  V2CO2 are more 
sensitive to NO. The surface functional groups of  Ti3C2Tx 
MXene material are a combination of -F, = O, and -OH. The 
presence and content changes of these functional groups can 
achieve selective sensing of gas molecules. For example, 
Pourfath et al. [220] studied through charge difference cal-
culations that the contribution of surface functional groups 
to charge transfer is different. Fluorine atoms have a smaller 
contribution to charge transfer than oxygen atoms. There-
fore, there is a strong electrostatic attraction between the 
lone pair electrons of the O atom in the = O functional group 
on MXenes and the positively charged part of the exposed 
hydrogen atom in  NH3 molecules. Therefore, controlling the 
content of the = O functional group on the MXenes surface 
can improve the selectivity toward  NH3 molecules. Recently, 
Naqvi et al. [221] explored several gases (such as  CH4) 
through DFT calculations.

5.2  First Principles Exploration of MXenes 
Gas‑Sensitive Mechanisms

Maleski et al. [42] used DFT to simulate and calculate 
the binding energies of acetone and ammonia on  Ti3C2Tx, 

 MoS2, RGO, and BP to study the sensing mechanism of 
 Ti3C2Tx on acetone and  NH3 gases, as shown in Fig. 23d. 
For the two gases of acetone and ammonia,  Ti3C2(OH)2 
exhibits the strongest binding energy more than twice 
that of other two-dimensional materials. It is speculated 
that the superior gas adsorption performance of hydroxyl 
groups in  Ti3C2Tx is the main reason for its high sensi-
tivity to acetone and ammonia. This work demonstrates 
the presence of charge transfer induced by gas adsorption 
in the gas sensing mechanism of MXenes. In addition, 
Zhou et al. [216] used  Ti3C2Tx as a gas sensing mate-
rial to test  CH4,  H2S,  H2O,  NH3, NO, ethanol, metha-
nol, and acetone gases at room temperature, and found 
that  Ti3C2Tx had very high selectivity for  NH3. In order 
to understand the reason for this high selectivity, they 
also studied the adsorption behavior, adsorption energy, 
adsorption geometry, charge transfer, and other aspects 
using first principles calculation methods. They also con-
firmed that the charge transfer caused by  NH3 adsorption 
on  Ti3C2Tx is the main reason for the change in resistance 
of  Ti3C2Tx. However, MXenes have metal conductivity 
and contain interlayer water molecules, which means that 
gas molecules may interact in a more complex manner 
than typical charge transfer. Koh et al. [222] demonstrated 
the swelling effect of gas on  Ti3C2Tx MXene materials 
by intercalating  Ti3C2Tx with  Na+ ions and using in situ 
XRD technology. After 70 min of ethanol blowing, the 
(002) peak of  Ti3C2Tx shifted toward a smaller angle and 
the interlayer spacing increased by 0.82 Å. After 120 min 
of  N2 blowing, the adsorbed ethanol was desorbed and the 
(002) peak of  Ti3C2Tx recovered toward a larger angle. 

Table 4  Advantages and disadvantages of MXene-based composite gas sensors

MXene-complex Advantage Shortcoming

MXene/rGO The working temperature is room temperature, and the 
detection limit for various gases is low, with good sensi-
tivity

The response recovery time at room temperature is 
relatively long, and the corresponding gas sensing 
mechanism of the composite material is unclear

MXene/metallic oxide High sensitivity and high response to various VOC gases The selectivity is poor, the working temperature cannot 
reach room temperature, and the stability is poor

MXene/TMDs The reaction temperature is room temperature and has 
good stability

There is relatively little research, and the gas sensing 
response of composite materials is relatively low

MXene/MOF It has high sensitivity in a dry environment and operates at 
room temperature

There is no gas sensitivity research on VOC gas

MXene/polymer Composite materials are most suitable for use in humidity 
gas sensors and operate at room temperature

The minimum limit for detecting gas/VOC/humidity 
response is relatively high
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The interlayer spacing of  Ti3C2Tx membrane decreased by 
0.51 Å compared to that after ethanol swelling, as shown 
in Fig. 23e. Therefore, regulating the interlayer distance 
of  Ti3C2Tx MXene is also very important for improving 
the selectivity of gas sensing.

6  Summary and Outlook

Starting from the application of new MXene-based compos-
ites in the field of gas sensing, this article briefly introduces 
the preparation methods of gas sensing devices, the struc-
ture of MXene, and the properties related to gas sensing. It 

Fig. 23  a Side and top views of the most stable configurations of different gas molecules adsorbed on the  Ti3C2O2 surface. Reproduced with 
permission from Ref. [216]. b Two-probe model of monolayer  Sc2CO2 sensor for detecting  SO2 molecule. c Predicted I-V characteristics of  Sc2 
 CO2 with  SO2 molecules. Reproduced with permission from Ref. [218]. d Density functional theory (DFT) simulation results for gas molecules 
adsorbed on various 2D materials. Side and top views of the minimum energy configurations for acetone and ammonia on  Ti3C2(OH)2. Mini-
mum binding energies of acetone and ammonia on  Ti3C2(OH)2,  Ti3C2O2,  Ti3C2F2, graphene,  MoS2, and BP. Reproduced with permission from 
Ref. [42]. e The (002) peak shift of  Ti3C2T2 film during  N2 purging for 200 min. The (002) peak shift of  Ti3C2Tx film during introduction of  CO2 
(1%) or ethanol (0.1%) for 70 min, followed by  N2 purging for 120 min to purge out target gases. Reproduced with permission from Ref. [222].
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focuses on the research progress of MXene and graphene, 
metal oxides, TMDs, MOFs, and polymers in the field of 
gas sensing, and summarizes the gas sensing mechanism of 
MXene. However, the development of practical gas sensors 
based on MXene still faces many challenges:

1. It is necessary to develop green and safe macro prepa-
ration methods and surface functional group oriented 
regulation technologies for MXene. At present, the 
most mature preparation method for  Mn+1Xn is liquid-
phase chemical etching, usually using ternary  Mn+1AXn 
precursors as starting materials. In fluorinated solu-
tions such as hydrofluoric acid (HF) and fluoride salts 
(LiF + HCl,  NH4HF2), chemical etching selectively 
removes the A-layer elements in ternary  Mn+1AXn, 
achieving good selective etching effect and obtaining 
functional group-rich multilayer  Mn+1XnTx materials. 
On the one hand, MAX phase is usually formed through 
high-temperature processing of titanium and aluminum, 
and requires several grinding processes to obtain fine 
MAX powder. On the other hand, using hydrofluoric 
acid or fluorinated salts as etching solvents, the highly 
toxic gases generated during the preparation process 
seriously endanger human and environmental safety. In 
addition, the etching capabilities of different solution 
systems vary, resulting in low two-dimensional yield 
and difficulty in optimizing the preparation process. This 
will result in high preparation costs for MXene materials 
and limit their large-scale application in the gas sensing 
field. More importantly, the fluorine containing solution 
reaction system inevitably leads to the random coexist-
ence of three functional groups (= O, -F, -OH) on the 
surface of  Mn+1XnTx, making accurate control extremely 
difficult. The regulation of functional group states (types 
and quantities) by changing experimental conditions 
faces enormous challenges in experiments, and mature 
and feasible experimental methods for precise regulation 
of functional groups have not yet been formed, making it 
difficult to improve selectivity for specific gases through 
the design of surface functional groups.

2. The variety of MXene material systems still needs to be 
greatly expanded. Since the discovery of MXene materi-
als in 2011, people’s understanding of their structure is 
still in the initial stage, especially the lack of effective 
preparation techniques for the types of MXene materi-
als predicted by theory. As a result, MXene currently 
used in the gas sensing field mainly focuses on two-
dimensional  Ti3C2Tx and its composite materials. For 
the large number of MXene material families, more 
innovative preparation methods have been developed 
to synthesize pure MXene materials with more diverse 

types. The combination of surface modification, element 
doping, heterogeneous recombination and other means 
to design the composition of the material is a technical 
bottleneck in expanding the application of MXene in the 
gas sensing field.

3. The interaction mechanism between MXene and gas 
molecules needs to be further studied. Due to the richer 
atomic species and combination types of MXene com-
pared to traditional two-dimensional materials such as 
graphene, the surface adsorption and charge transfer 
mechanisms in gas-sensitive processes will be more 
complex. Whether it is oxidizing or reducing, it is 
observed that all adsorbed gas molecules will cause an 
increase or decrease in resistance with a high signal-to-
noise ratio. At the same time, interlayer expansion also 
has a significant impact on the conductivity changes and 
gas response of the material.

At present, research on MXene is still in its infancy, pro-
viding a basic building block for gas-sensitive materials. 
Experimental data and computational predictions indicate 
that by selecting over 60 sets of available layered ternary 
carbides and nitrides, stable structures of different types 
of MXene can be obtained. It is expected that MXene and 
its composites will have unlimited potential in the field of 
gas sensing.
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