Supporting Information for

Durable Ru Nanocrystal with HfO₂ Modification for Acidic Overall Water Splitting

Xiangkai Kong^{1, 2, *}, Jie Xu^{2, 4}, Zhicheng Ju^{1, *}, and Changle Chen^{3, *}

¹ School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China

² Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China

³ School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China

⁴ School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China

*Corresponding authors. E-mail: <u>changle@ustc.edu.cn</u> (Changle Chen), <u>xkong@cumt.edu.cn</u> (Xiangkai Kong), <u>juzc@cumt.edu.cn</u> (Zhicheng Ju)

Supplementary Figures and Tables

Fig. S1 SEM images of S-Ru/HfO2

Fig. S2 SEM image of L-Ru/HfO₂

Fig. S3 The height profiles of individual nanosheets for (A) L-Ru/HfO₂ and (B) S-Ru/HfO₂

Fig. S4 BET data of (A) surface area and (B) pore size distribution for these samples

Fig. S5 XRD patterns of L-Ru/HfO2 and S-Ru/HfO2

Fig. S6 XPS survey spectra of these as-synthesized samples

Fig. S7 O 1s spectra of these as-synthesized samples

Fig. S8 Hf 4f spectra of these as-synthesized samples

Fig. S9 XRD pattern of H-Ru/HfO₂

Fig. S10 The LSV curves of acidic (A) OER and (B) HER recorded on samples prepared with different amounts of $Ru(acac)_3$

Fig. S11 Tafel slopes of these catalysts for OER measurement in 0.5 M H₂SO₄

Fig. S12 EIS of these catalysts recorded at an overpotential of 200mV for OER in 0.5 M H_2SO_4

Fig. S13 Electrochemical measurement in $0.5 \text{ M H}_2\text{SO}_4$ for comparison of H-Ru/HfO₂ with L-Ru/HfO₂ and S-Ru/HfO₂: (**A**) LSV curves and (**B**) Tafel slopes.

Fig. S14 (**A**) The current difference between positive scan and negative scan as a function of scan rates for double layer capacitance evaluation. (**B**) The calculated TOFs for these samples

Fig. S15 The physical characterizations on L-Ru/HfO₂ after the durability test: (**A**) SEM, (**B**) TEM and (**C**) HRTEM images

Fig. S16 XPS spectra of Ru 3p signals of these samples after the durability test

Fig. S17 The measured LSV curves of these samples during HER operation in (**A**) 1 M KOH and (**B**) 1 M PBS electrolytes

Fig. S18 The obtained (A) Tafel slopes and (B) EIS curves of these samples for HER measurement

Fig. S19 The chronoamperometry measurement of L-Ru/HfO₂ for HER stability evaluation, with the LSV curves before and after the stability test inset in

Fig. S20 The recorded current during the in situ XPS measurement with an applied voltage of 2.0 V

Fig. S21 The simulated models for (A) HfO_2 (001) surface, (B) Ru_{13} cluster and (C) RuO_2 (001) surface

Fig. S22 HER free-energy diagrams of Ru and Ru/HfO₂ for comparison

Table S1 Ru *K*-edge EXAFS least-squares fitting parameters^{*a*} for Ru foil, RuO_2 standard, 464-Ru-1, and 464-Ru-2 sample

Material	Path	N	<i>R</i> (Å)	σ^2 (Å ²)	$\Delta E_0 ({ m eV})$ I	R-factor
Ru foil ^b	Ru-Ru	12	2.351±0.038	0.00290	-6.95±0.64	0.159%
RuO ₂ ^c	Ru-O1	6	1.575±0.095	0.00297	-5.75±0.78	0.167%
	Ru-O2	12	1.482 ± 0.020	0.00281		
S-Ru/HfO2 ^d	Ru-O-Hf	0.82±0.05	1.729±0.066	0.00180	5.25±0.38	0.657%
	Ru-Ru	4.65±0.29	2.416±0.050	0.00597		
L-Ru/HfO2 ⁴	Ru-O-Hf	0.76±0.08	1.776±0.003	0.00127	5.79±0.50	0.880%
	Ru-Ru	6.61±0.48	2.388±0.042	0.00633		

^{*a*}*N*, coordination number; *R*, distance between absorber and backscatter atoms; σ^2 , Debye-Waller factor to account for both thermal and structural disorders; ΔE_0 , inner potential correction; *R*-factor (%) generally estimates the goodness of the fit. Error bounds (accuracies) that characterize the structural parameters obtained by EXAFS spectroscopy were estimated as $N\pm 20\%$; $R\pm 1\%$; $\sigma^2\pm 20\%$; $\Delta E_0\pm 20\%$. S_0^2 was fixed as 0.80, which was determined by fitting the experimental data on Ru foil with fixed coordination numbers (in bold) according to the crystal structure, as well for RuO₂ standard. ^bFitting range for Ru foil was selected to be $2.0 \le k \le 12.2$ Å⁻¹ (k^2 -weighted) and $1.7 \le R \le 3.0$ Å, yielding the number of variable parameters being 3, out of a total of 8.13 independent data points. ^cFitting range for RuO₂ was selected to be $2.0 \le k \le 13.5$ Å⁻¹ (k^2 -weighted) and $1.0 \le R \le 2.0$ Å, yielding the number of variable parameters being 3, out of a total of 7.16 independent data points. ^dFitting range for Ru sample was selected to be $2.8 \le k \le 9.5$ Å⁻¹ (k^3 -weighted) and $1.0 \le R \le 3.0$ Å, yielding the number of variable parameters being 4, out of a total of 8.31 independent data points.

Catalyst	$\eta_{10}(mV)$	Tafel plots (mV dec ⁻¹)	Electrolyte	Refs.
L-Ru/HfO ₂	197	46.8	0.5M H ₂ SO ₄	this work
Co-RuO ₂ /OCNT	260	83	0.1 M KOH	S1
E-Ru/Fe ONAs	238	44.8	0.5M H ₂ SO ₄	S2
Ru-UiO-67-bpydc	200	78.3	0.5M H ₂ SO ₄	S3
RuO ₂ /(Co,Mn) ₃ O ₄ /CC	270	77	0.5M H ₂ SO ₄	S4
L-Ru	202	69.6	0.5M H ₂ SO ₄	S5
Ru SAs/AC-FeCoNi	205	40	1 M KOH	S6
3%Rh-				
FeOOH@Ti ₃ C ₂ T _x	223	63.6	1 M KOH	S7
Ru NCs/VN-C ₃ N ₄	200	60	1 M KOH	S8
Ru1Ir1O _x	240	71.3	$0.5M H_2 SO_4$	S9
$Mn_{0.73}Ru_{0.27}O_{2-\delta}$	208	65.3	$0.5M H_2 SO_4$	S10
RuNi ₂ ©G-250	227	65	$0.5M H_2 SO_4$	S11
Ru/Co ₃ O _{4-x}	280	86.9	1 M KOH	S12
Ru/S NSs-400	219	46.1	$0.5M H_2 SO_4$	S13
IrRu@WO ₃	245	62	$0.5M H_2 SO_4$	S14
Ru@g-CN _x	280	49.5	1 M KOH	S15
HS-RuCo/NC	216	76.1	1 M KOH	S16
Ni ₃ Co ₃ @Ru HNS	300	60	0.1 M KOH	S17
Ru/NiFe(OH)x/NiFe-				
MOF	242	30.63	1 M KOH	S18
$Ru_{0.6}W_{17.4}O_{49-\delta}$	252	50	0.1 M HClO4	S19
Ru/Co-N-C	232	67.5	0.5M H ₂ SO ₄	S20
S-F-400	241	56	1 M KOH	S21

Table S2 Comparison of OER activity of L-Ru/HfO2 with different catalysts

Ru1/VCo-Co(OH) ₂	241	74	1 M KOH	S22
Ni-Ru@RuO _x -HL	184	44	$0.5M H_2 SO_4$	S23
CoO _x /RuOx-CC	180	61.2	$0.5M H_2 SO_4$	S24
Ru-exchanged Cu-BTC	188	43.96	$0.5M H_2 SO_4$	S25
IrRu@Te	220	35	$0.5M H_2 SO_4$	S26
LFRO-H-O	380	39	1 M KOH	S27
Ru-N-C	267	52.6	$0.5M H_2 SO_4$	S28
YZRO/AB	291	36.9	$0.5MH_2SO_4$	S29
Ru–NiSe ₂ /NF	210	60.5	1 M KOH	S30
STRO/NF	375	224	0.1 M KOH	S31
PRPO-350	174	28.8	0.1 M HClO4	S32
NaAl-LRNO	270	69.3	1 M KOH	S33
Ru/Se-RuO ₂	190	43.7	$0.5M H_2 SO_4$	S34
Rux SACs@FeCo-LDH	194	25	1 M KOH	S35
Co-Fe-Ru/PNCS	310	84.6	1 M KOH	S36
$Bi_2Ru_2O_7$	448	108	0.1 M KOH	S37
Sn _{0.1} -RuO ₂ @NCP	178	60.6	$0.5MH_2SO_4$	S38
Mo-YRO	240	40.5	0.1 M HClO4	S39
Ru/NiFe ²⁺ Fe-LDH	194	36	1 M KOH	S40
NiFeRu-LDH	225	32.4	1 M KOH	S41
CIS@Ir ₄₈ Ru ₅₂	244.4	68.4	0.1 M HClO4	S42
RuO ₂ NS _s	199	38.2	$0.5M H_2 SO_4$	S43
RuCo@CD	190	49.5	$0.5M H_2 SO_4$	S44
RuTe ₂ -400	275	53	1 M KOH	S45
Ru ₃ MoCeO _x	164	61.2	$0.5M H_2 SO_4$	S46
CoNiRuO _x -2	245	82.3	1 M KOH	S47
NiRuOx-C	215	52.6	1 M KOH	S48
Co-Ru@RuOx/NCN	270	67	1 M KOH	S49
6.8% Rh SAC-CuO				
NA _s /CF	197	71.7	1 M KOH	S50
3D Se-(NiCo)S _x /(OH) _x	155	33.9	1 M KOH	S51
NiIrRuAl-1/3	237	50	0.1 M HClO4	S52
RuIrTe NTs	205	41.2	$0.5M H_2 SO_4$	S53
$In_{0.17}Ru_{0.83}O_2-35$	177	32.62	0.5 M H2SO4	S54
Ru/B-Ni ₂ P/Ni ₅ P ₄	270	46.7	1 M KOH	S55
AlNiCoRuMoCrFeTiHE				
0	240	51.3	1 M KOH	S56
Ru _{9.1} -NiFe-MOF/NFF	202	30.5	1 M KOH	S57
RuO ₂ /CoO _x	240	70	1 M PBS	S58

Supplementary References

- [S1] Q. Lu, X. Zou, X. Wang, L. An, Z. Shao et al., Simultaneous reactant accessibility and charge transfer engineering in Co-doped RuO2-supported OCNT for robust rechargeable zinc-air batteries. Appl. Catal. B Environ. 325, 122323 (2023). <u>https://doi.org/10.1016/j.apcatb.2022.122323</u>
- [S2] Q. Yao, B. Huang, Y. Xu, L. Li, Q. Shao et al., A chemical etching strategy to improve and stabilize RuO₂-based nanoassemblies for acidic oxygen evolution. Nano Energy 84, 105909 (2021). <u>https://doi.org/10.1016/j.nanoen.2021.105909</u>
- [S3] N. Yao, H. Jia, J. Zhu, Z. Shi, H. Cong et al., Atomically dispersed Ru oxide catalyst with lattice oxygen participation for efficient acidic water oxidation. Chem 9, 1882–1896 (2023). <u>https://doi.org/10.1016/j.chempr.2023.03.005</u>
- [S4] S. Niu, X.-P. Kong, S. Li, Y. Zhang, J. Wu et al., Low Ru loading RuO₂/(Co, Mn)₃O₄ nanocomposite with modulated electronic structure for efficient oxygen evolution reaction in acid. Appl. Catal. B Environ. 297, 120442 (2021). https://doi.org/10.1016/j.apcatb.2021.120442
- [S5] J.-Q. Wang, C. Xi, M. Wang, L. Shang, J. Mao et al., Laser-generated grain boundaries in ruthenium nanoparticles for boosting oxygen evolution reaction. ACS Catal. 10, 12575–12581 (2020). <u>https://doi.org/10.1021/acscatal.0c03406</u>
- [S6] Y. Hu, G. Luo, L. Wang, X. Liu, Y. Qu et al., Single Ru atoms stabilized by hybrid amorphous/crystalline FeCoNi layered double hydroxide for ultraefficient oxygen evolution. Adv. Energy Mater. 11, 2002816 (2021). <u>https://doi.org/10.1002/aenm.202002816</u>
- [S7] B. Zhang, J. Shan, X. Wang, Y. Hu, Y. Li Ru/Rh cation doping and oxygenvacancy engineering of FeOOH Nanoarrays@Ti₃ C₂ t_x MXene heterojunction for highly efficient and stable electrocatalytic oxygen evolution. Small 18, e2200173 (2022). <u>https://doi.org/10.1002/smll.202200173</u>
- [S8] J. Zhao, H. Guo, Y. Li, L. Zheng, H. Ren et al., Anchoring Ru nanoclusters to defect-rich polymeric carbon nitride as a bifunctional electrocatalyst for highly efficient overall water splitting. J. Mater. Chem. A 11, 18375–18386 (2023). https://doi.org/10.1039/d3ta02817h
- [S9] J. He, X. Zhou, P. Xu, J. Sun Regulating electron redistribution of intermetallic iridium oxide by incorporating Ru for efficient acidic water oxidation. Adv. Energy Mater. 11, 2102883 (2021). <u>https://doi.org/10.1002/aenm.202102883</u>
- [S10] K. Wang, Y. Wang, B. Yang, Z. Li, X. Qin et al., Highly active ruthenium sites stabilized by modulating electron-feeding for sustainable acidic oxygen-evolution electrocatalysis. Energy Environ. Sci. 15, 2356–2365 (2022). <u>https://doi.org/10.1039/D1EE03610F</u>

- [S11] X. Cui, P. Ren, C. Ma, J. Zhao, R. Chen et al., Robust interface Ru centers for highperformance acidic oxygen evolution. Adv. Mater. 32, e1908126 (2020). <u>https://doi.org/10.1002/adma.201908126</u>
- [S12] C.-Z. Yuan, S. Wang, K. San Hui, K. Wang, J. Li et al., *In situ* immobilizing atomically dispersed Ru on oxygen-defective Co₃O₄ for efficient oxygen evolution. ACS Catal. 13, 2462–2471 (2023). <u>https://doi.org/10.1021/acscatal.2c04946</u>
- [S13] L. Liu, Y. Ji, W. You, S. Liu, Q. Shao et al., Trace lattice S inserted RuO₂ flexible nanosheets for efficient and long-term acidic oxygen evolution catalysis. Small 19, e2208202 (2023). <u>https://doi.org/10.1002/smll.202208202</u>
- [S14] G. Jiang, H. Yu, D. Yao, Y. Li, J. Chi et al., Boosting the oxygen evolution stability and activity of a heterogeneous IrRu bimetallic coating on a WO₃ nano-array electrode for PEM water electrolysis. J. Mater. Chem. A 10, 11893–11903 (2022). https://doi.org/10.1039/d1ta09887j
- [S15] T. Gao, K.S. Kumar, Z. Yan, M. Marinova, M. Trentesaux et al., Covalent organic framework derived synthesis of Ru embedded in carbon nitride for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 11, 19338–19348 (2023). https://doi.org/10.1039/D3TA01362F
- [S16] J. Du, D. Chen, Y. Ding, L. Wang, F. Li et al., Highly stable and efficient oxygen evolution electrocatalyst based on co oxides decorated with ultrafine Ru nanoclusters. Small 19, e2207611 (2023). <u>https://doi.org/10.1002/smll.202207611</u>
- [S17] H. Hwang, T. Kwon, H.Y. Kim, J. Park, A. Oh et al., Ni@Ru and NiCo@Ru coreshell hexagonal nanosandwiches with a compositionally tunable core and a regioselectively grown shell. Small 14. DOI: 10.1002/smll.201702353. (2018). <u>https://doi.org/10.1002/smll.201702353</u>
- [S18] D. Liu, H. Xu, C. Wang, C. Ye, R. Yu et al., *In situ* etch engineering of Ru doped NiFe(OH)_x/NiFe-MOF nanocomposites for boosting the oxygen evolution reaction. J. Mater. Chem. A 9, 24670–24676 (2021). <u>https://doi.org/10.1039/d1ta06438j</u>
- [S19] X. Wang, H. Jang, S. Liu, Z. Li, X. Zhao et al., Enhancing the catalytic kinetics and stability of Ru sites for acidic water oxidation by forming Brønsted acid sites in tungsten oxide matrix. Adv. Energy Mater. 13, 2301673 (2023). https://doi.org/10.1002/aenm.202301673
- [S20] C. Rong, X. Shen, Y. Wang, L. Thomsen, T. Zhao et al., Electronic structure engineering of single-atom Ru sites via co-N4 sites for bifunctional pH-universal water splitting. Adv. Mater. 34, e2110103 (2022). https://doi.org/10.1002/adma.202110103
- [S21] K. Yang, P. Xu, Z. Lin, Y. Yang, P. Jiang et al., Ultrasmall Ru/Cu-doped RuO₂ complex embedded in amorphous carbon skeleton as highly active bifunctional

electrocatalysts for overall water splitting. Small **14**, e1803009 (2018). https://doi.org/10.1002/smll.201803009

- [S22] D. Wang, J. Xue, X. Ding, J. Wei, C. Feng et al., Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution. ACS Catal. 12, 12458–12468 (2022). https://doi.org/10.1021/acscatal.2c03476
- [S23] A.M. Harzandi, S. Shadman, A.S. Nissimagoudar, D.Y. Kim, H.-D. Lim et al., Ruthenium core–shell engineering with nickel single atoms for selective oxygen evolution via nondestructive mechanism. Adv. Energy Mater. 11, 2003448 (2021). <u>https://doi.org/10.1002/aenm.202003448</u>
- [S24] L. Deng, S. Liu, D. Liu, Y.-M. Chang, L. Li et al., Activity-stability balance: the role of electron supply effect of support in acidic oxygen evolution. Small 19, e2302238 (2023). <u>https://doi.org/10.1002/smll.202302238</u>
- [S25] J. Su, R. Ge, K. Jiang, Y. Dong, F. Hao et al., Assembling ultrasmall copper-doped ruthenium oxide nanocrystals into hollow porous polyhedra: highly robust electrocatalysts for oxygen evolution in acidic media. Adv. Mater., e1801351 (2018). <u>https://doi.org/10.1002/adma.201801351</u>
- [S26] J. Xu, Z. Lian, B. Wei, Y. Li, O. Bondarchuk et al., Strong electronic coupling between ultrafine iridium–ruthenium nanoclusters and conductive, acid-stable tellurium nanoparticle support for efficient and durable oxygen evolution in acidic and neutral media. ACS Catal. 10, 3571–3579 (2020). https://doi.org/10.1021/acscatal.9b05611
- [S27] L. Fu, J. Zhou, L. Zhou, J. Yang, Z. Liu et al., Facile fabrication of exsolved nanoparticle-decorated hollow ferrite fibers as active electrocatalyst for oxygen evolution reaction. Chem. Eng. J. 418, 129422 (2021). https://doi.org/10.1016/j.cej.2021.129422
- [S28] L. Cao, Q. Luo, J. Chen, L. Wang, Y. Lin et al., Dynamic oxygen adsorption on single-atomic Ruthenium catalyst with high performance for acidic oxygen evolution reaction. Nat. Commun. 10, 4849 (2019). <u>https://doi.org/10.1038/s41467-019-12886-z</u>
- [S29] Q. Feng, Q. Wang, Z. Zhang, Y. Xiong, H. Li et al., Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl. Catal. B Environ. 244, 494–501 (2019). https://doi.org/10.1016/j.apcatb.2018.11.071
- [S30] R. Qin, P. Wang, Z. Li, J. Zhu, F. Cao et al., Ru-incorporated nickel diselenide nanosheet arrays with accelerated adsorption kinetics toward overall water splitting. Small 18, e2105305 (2022). <u>https://doi.org/10.1002/smll.202105305</u>

- [S31] H.-J. Liu, C.-Y. Chiang, Y.-S. Wu, L.-R. Lin, Y.-C. Ye et al., Breaking the relation between activity and stability of the oxygen-evolution reaction by highly doping Ru in wide-band-gap SrTiO₃ as electrocatalyst. ACS Catal. **12**, 6132–6142 (2022). <u>https://doi.org/10.1021/acscatal.1c05539</u>
- [S32] X. Ping, Y. Liu, S. Chen, N. Ran, L. Zheng et al., Tailoring B-site of lead-ruthenate pyrochlore for boosting acidic water oxidation activity and stability. Appl. Catal. B Environ. **318**, 121884 (2022). <u>https://doi.org/10.1016/j.apcatb.2022.121884</u>
- [S33] A.N. Singh, M.H. Kim, A. Meena, T.U. Wi, H.W. Lee et al., Na/Al codoped layered cathode with defects as bifunctional electrocatalyst for high-performance Li-ion battery and oxygen evolution reaction. Small 17, e2005605 (2021). https://doi.org/10.1002/smll.202005605
- [S34] K. Huang, C. Lin, G. Yu, P. Du, X. Xie et al., Ru/Se-RuO₂ composites via controlled selenization strategy for enhanced acidic oxygen evolution. Adv. Funct. Mater. 33, 2211102 (2023). <u>https://doi.org/10.1002/adfm.202211102</u>
- [S35] X. Mu, X. Gu, S. Dai, J. Chen, Y. Cui et al., Breaking the symmetry of single-atom catalysts enables an extremely low energy barrier and high stability for largecurrent-density water splitting. Energy Environ. Sci. 15, 4048–4057 (2022). https://doi.org/10.1039/d2ee01337a
- [S36] Z. Peng, C. Han, C. Huang, Z. Dong, X. Ma Preventing surface passivation of transition metal nanoparticles in oxygen electrocatalyst to extend the lifespan of Zn-air battery. J. Mater. Sci. Technol. **128**, 205–212 (2022). https://doi.org/10.1016/j.jmst.2022.03.033
- [S37] M. Kim, H. Ju, J. Kim Single crystalline Bi₂Ru₂O₇ pyrochlore oxide nanoparticles as efficient bifunctional oxygen electrocatalyst for hybrid Na-air batteries. Chem. Eng. J. 358, 11–19 (2019). <u>https://doi.org/10.1016/j.cej.2018.09.204</u>
- [S38] L. Qiu, G. Zheng, Y. He, L. Lei, X. Zhang Ultra-small Sn-RuO₂ nanoparticles supported on N-doped carbon polyhedra for highly active and durable oxygen evolution reaction in acidic media. Chem. Eng. J. 409, 128155 (2021). https://doi.org/10.1016/j.cej.2020.128155
- [S39] T. Liu, H. Guo, Y. Chen, Z. Zhang, F. Wang Role of MoO_x surficial modification in enhancing the OER performance of Ru-pyrochlore. Small 19, e2206698 (2023). <u>https://doi.org/10.1002/smll.202206698</u>
- [S40] X. Duan, P. Li, D. Zhou, S. Wang, H. Liu et al., Stabilizing single-atomic ruthenium by ferrous ion doped NiFe-LDH towards highly efficient and sustained water oxidation. Chem. Eng. J. 446, 136962 (2022). https://doi.org/10.1016/j.cej.2022.136962

- [S41] G. Chen, T. Wang, J. Zhang, P. Liu, H. Sun et al., Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites. Adv. Mater. 30, 1706279 (2018). https://doi.org/10.1002/adma.201706279
- [S42] J. Joo, H. Jin, A. Oh, B. Kim, J. Lee et al., An IrRu alloy nanocactus on $Cu_{2-x}S@IrS_y$ as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J. Mater. Chem. A **6**, 16130–16138 (2018). https://doi.org/10.1039/c8ta04886j
- [S43] Z.L. Zhao, Q. Wang, X. Huang, Q. Feng, S. Gu et al., Boosting the oxygen evolution reaction using defect-rich ultra-thin ruthenium oxide nanosheets in acidic media. Energy Environ. Sci. 13, 5143–5151 (2020). <u>https://doi.org/10.1039/d0ee01960g</u>
- [S44] T. Feng, G. Yu, S. Tao, S. Zhu, R. Ku et al., A highly efficient overall water splitting ruthenium-cobalt alloy electrocatalyst across a wide pH range via electronic coupling with carbon dots. J. Mater. Chem. A 8, 9638–9645 (2020). <u>https://doi.org/10.1039/D0TA02496A</u>
- [S45] B. Tang, X. Yang, Z. Kang, L. Feng Crystallized RuTe₂ as unexpected bifunctional catalyst for overall water splitting. Appl. Catal. B Environ. 278, 119281 (2020). <u>https://doi.org/10.1016/j.apcatb.2020.119281</u>
- [S46] J. He, W. Li, P. Xu, J. Sun Tuning electron correlations of RuO₂ by co-doping of Mo and Ce for boosting electrocatalytic water oxidation in acidic media. Appl. Catal. B Environ. 298, 120528 (2021). https://doi.org/10.1016/j.apcatb.2021.120528
- [S47] Y. Zhang, D. Wang, C. Ye, F. Gao, Z. Li et al., Regulation of crystallinity and defects on CoNiRuOx nanocages for enhanced oxygen evolution reaction. Chem. Eng. J. 466, 143059 (2023). <u>https://doi.org/10.1016/j.cej.2023.143059</u>
- [S48] Y. Zhao, M. Xi, Y. Qi, X. Sheng, P. Tian et al., Redirecting dynamic structural evolution of nickel-contained RuO₂ catalyst during electrochemical oxygen evolution reaction. J. Energy Chem. 69, 330–337 (2022). https://doi.org/10.1016/j.jechem.2022.01.030
- [S49] H. Wang, P. Yang, X. Sun, W. Xiao, X. Wang et al., Co-Ru alloy nanoparticles decorated onto two-dimensional nitrogen doped carbon nanosheets towards hydrogen/oxygen evolution reaction and oxygen reduction reaction. J. Energy Chem. 87, 286–294 (2023). <u>https://doi.org/10.1016/j.jechem.2023.08.039</u>
- [S50] H. Xu, T. Liu, S. Bai, L. Li, Y. Zhu et al., Cation exchange strategy to single-atom noble-metal doped CuO nanowire arrays with ultralow overpotential for H₂O splitting. Nano Lett. 20, 5482–5489 (2020). https://doi.org/10.1021/acs.nanolett.0c02007

- [S51] C. Hu, L. Zhang, Z.-J. Zhao, A. Li, X. Chang et al., Synergism of geometric construction and electronic regulation: 3D Se-(NiCo)S_x/(OH)_x nanosheets for highly efficient overall water splitting. Adv. Mater. **30**, e1705538 (2018). <u>https://doi.org/10.1002/adma.201705538</u>
- [S52] N. Liu, K. Yin, C. Si, T. Kou, Y. Zhang et al., Hierarchically porous nickeliridium-ruthenium-aluminum alloys with tunable compositions and electrocatalytic activities towards the oxygen/hydrogen evolution reaction in acid electrolyte. J. Mater. Chem. A 8, 6245–6255 (2020). <u>https://doi.org/10.1039/D0TA00445F</u>
- [S53] M. Liu, S. Liu, Q. Mao, S. Yin, Z. Wang et al., Ultrafine ruthenium-iridiumtellurium nanotubes for boosting overall water splitting in acidic media. J. Mater. Chem. A 10, 2021–2026 (2022). <u>https://doi.org/10.1039/d1ta07789a</u>
- [S54] S. Chen, C. Wang, F. Gao, Y. Yang, M. Huang et al., An indium-induced-synthesis In_{0.17}Ru_{0.83}O₂ nanoribbon as highly active electrocatalyst for oxygen evolution in acidic media at high current densities above 400 mA cm⁻². J. Mater. Chem. A **10**, 3722–3731 (2022). <u>https://doi.org/10.1039/d1ta10022j</u>
- [S55] Y. Wang, Q. Sun, Z. Wang, W. Xiao, Y. Fu et al., *In situ* phase-reconfiguration to synthesize Ru, B Co-doped nickel phosphide for energy-efficient hydrogen generation in alkaline electrolytes. J. Mater. Chem. A 10, 16236–16242 (2022). https://doi.org/10.1039/D2TA02685F
- [S56] Z. Jin, J. Lyu, K. Hu, Z. Chen, G. Xie et al., Eight-component nanoporous highentropy oxides with low Ru contents as high-performance bifunctional catalysts in Zn-air batteries. Small 18, e2107207 (2022). https://doi.org/10.1002/smll.202107207
- [S57] W. Jiang, J. Wang, Y. Jiang, Y. Wu, B. Liu et al., Multivalent ruthenium immobilized by self-supported NiFe–organic frameworks for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 11, 2769–2779 (2023). <u>https://doi.org/10.1039/d2ta06560f</u>
- [S58] K. Du, L. Zhang, J. Shan, J. Guo, J. Mao et al., Interface engineering breaks both stability and activity limits of RuO₂ for sustainable water oxidation. Nat. Commun. 13, 5448 (2022). <u>https://doi.org/10.1038/s41467-022-33150-x</u>