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Supplementary Figures and Tables 

 

Fig. S1 TEM images of a MXene and b VP nanosheets. Insets show the SAED patterns. 

The Raman spectra of c MXene and d VP 
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The TEM images and selected area electron diffraction (SAED) patterns in Fig. S1a, b 

confirms that both MXene and VP have typical 2D sheet-like morphology and good 

crystallinity. The Raman spectrum of MXene (Fig. S1c) exhibits three broad bands due 

to the coexistence of multiple surface functional groups [S1], and that of VP (Fig. S1d) is 

sharp and complex, which is derived from the good crystallinity and complex crystal 

structure of VP, with up to 84 atoms in a single unit cell [S2]. 

 

Fig. S2 EDS elemental mapping of the MXene/VP hybrid film corresponding to the SEM 

image in Fig. 1f 

 

Fig. S3 Photoelectric response of pure VP 
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Fig. S4 Comparison of responsivity of VP-based photodetectors 

 

Fig. S5 The XPS spectrum of VP 

The XPS peaks at 130.6 and 129.7 eV can be respectively assigned to P 2p1/2 and P 2p3/2, 

while the peak at 133.9 eV indicates the presence of phosphorus oxides on the surface of 

VP [27]. 
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Fig. S6 Effect of mixing ratio of MXene and VP on photo response performance. a I-V 

curves, b responsivity and photocurrent, c EQE and D* of the device with a 0.01:1 volume 

ratio of MXene to VP at 360 nm. d I-V curves, e responsivity and photocurrent, f EQE 

and D* of the device with a 0.03:1 volume ratio of MXene to VP at 360 nm 

Figure S6 shows the effect of the mixing ratio of MXene and VP on the photoelectric 

response performance. It can be found that as the proportion of MXene increases, the 

photocurrent, responsivity, EQE and D* of the device are all improved, with the maximum 

responsivity of 23.1 A/W at a volume ratio of MXene to VP of 0.03:1. These results 

undoubtedly indicate that forming heterojunctions with MXene can effectively improve 

the photoelectric response of VP. However, the disadvantage of increasing the proportion 

of MXene is that the dark current of the device will be significantly increased due to the 

excellent conductivity of MXene. The dark current increases dramatically from 37 nA to 

260 μA when the ratio of MXene to VP is increased from 0.01:1 to 0.03:1. Therefore, we 

chose a moderate ratio of MXene to VP of 0.02:1 in the overall performance tests of the 

device. 

 

Fig. S7 a I-V curves, b responsivity and photocurrent, c EQE and D* of the device with a 

0.02:1 volume ratio of MXene to VP at 532 nm 

Figure S7 shows the response characteristics of the MXene/VP heterojunctions to visible 

light with a wavelength of 532 nm. I-V curves indicate that the MXene/VP heterojunctions 

have an obvious photoelectric response to 532 nm light. The maximum values of 

responsivity, EQE and D* are 0.76 A/W, 182% and 6.92 × 109 Jones respectively, which 

are lower than those values to 360 nm UV light. These results are consistent with the 
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optical absorption properties of VP shown in Fig. 3a and indicate the UV-Vis broadband 

photoelectric response characteristics of the MXene/VP heterojunctions. 

 

Fig. S8 Dark currents of the MXene/VP optoelectronic synapse in environments with 

different RH 

 

Fig. S9 Inhibitory postsynaptic current (IPSC) curve stimulated by 10 consecutive 

humidity pulses 

 

Fig. S10 Light potentiation and humidity depression in the MXene/VP optoelectronic 

synapse 
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Fig. S11 The EPSC curve under the excitation of a single light pulse in environments with 

different RH 

Table S1 Comparison of optoelectronic synapses based on 2D materials and their 

heterojunctions 

Material 

(device structure) 

Synaptic 

functions 

Vsd 

(V) 

PPF index 

(%) 

Energy 

consumption(p

J) 

Application Refs. 

Graphdiyne/Grap

hene/PbS QD 

(2T) 

EPSC/IPSC, 

PPF 
0.01 180 _ 

Pattern 

recognition/Im

age memory 

[S6] 

Black Phosphorus 

(2T) 

EPSC/IPSC, 

STDP, PPF 
_ 280 _ 

Logic 

computation 
[S7] 

α-In2Se3/GaSe 

(3T) 

EPSC/IPSC, 

PPF, SNDP 
0.5 121 _ Pavlov’s dog [S8] 

ReS2/h-BN (2T) EPSC, PPF _ 132 1.2 × 107 
Convolutional 

neural network 
[S9] 

MoS2/h-BN (3T) 

EPSC/IPSC, 

PPF, SADP, 

SRDP 

0.05 _ _ _ [S10] 

ZnO nanosheet 

(2T) 

EPSC, PPF, 

STDP, SRDP, 

SDDP, 

Learning-

experience 

0.05 170 87.5 Pavlov’s dog [S11] 

Graphdiyne 

/Graphene (3T) 

EPSC/IPSC, 

PPF, SRDP 
0.01 163 650 

Pattern 

recognition/Lo

gic 

computation 

[S12] 

CsPbBr3/MoS2 

(3T) 

EPSC, PPF, 

SRDP, SDDP 
0.1 _ 4200 Pavlov’s dog [S13] 

2D MOF (2T) 
EPSC, PPF, 

SRDP 
1 125 _ _ [S14] 

MXene/VP (2T) 

EPSC/IPSC, 

PPF, SADP, 

SNDP, SDDP, 

Learning-

experience 

0.001 135 14.7 

Image 

memory/ 

Crossmodal 

perception 

This 

work 
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EPSC: Excitatory postsynaptic currents; IPSC: Inhibitory postsynaptic current; PPF: Paired-pulse 

facilitation; SADP: Spike-amplitude-dependent plasticity; SNAP: Spike-number-dependent 

plasticity; SDDP: Spike-duration-dependent plasticity; SRDP: Spike-rate-dependent plasticity; 2/3T: 

2/3 terminal; Vsd: Source-drain voltage; QD: Quantum dot; MOF: Metal-organic framework  
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