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HIGHLIGHTS 

• The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, 
create significant opportunities to address many challenges in the health field.

• This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs.

• The challenges and the future development directions of the ultrasmall AuNPs are presented.

ABSTRACT Ultrasmall gold nanoparticles (AuNPs) typically includes atomically 
precise gold nanoclusters (AuNCs) and AuNPs with a core size below 3 nm. Serv-
ing as a bridge between small molecules and traditional inorganic nanoparticles, the 
ultrasmall AuNPs show the unique advantages of both small molecules (e.g., rapid 
distribution, renal clearance, low non-specific organ accumulation) and nanoparticles 
(e.g., long blood circulation and enhanced permeability and retention effect). The 
emergence of ultrasmall AuNPs creates significant opportunities to address many 
challenges in the health field including disease diagnosis, monitoring and treatment. 
Since the nano–bio interaction dictates the overall biological applications of the 
ultrasmall AuNPs, this review elucidates the recent advances in the biological inter-
actions and imaging of ultrasmall AuNPs. We begin with the introduction of the fac-
tors that influence the cellular interactions of ultrasmall AuNPs. We then discuss the 
organ interactions, especially focus on the interactions of the liver and kidneys. We 
further present the recent advances in the tumor interactions of ultrasmall AuNPs. In 
addition, the imaging performance of the ultrasmall AuNPs is summarized and discussed. Finally, we summarize this review and provide 
some perspective on the future research direction of the ultrasmall AuNPs, aiming to accelerate their clinical translation.
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1 Introduction

Ultrasmall gold nanoparticles (AuNPs) consist of atomically 
precise gold nanoclusters (AuNCs) or AuNPs with a core size 
below 3 nm [1–4], which possess a unique core–shell structure 
with sizes between small molecules and conventional nanoparti-
cles [5, 6]. As a result of the sharp size shrinking, the continuous 
energy levels of AuNPs become discrete [7, 8], resulting in dis-
tinct optical and electronic properties. After systematical regula-
tion of both the core and ligand layers of the ultrasmall AuNPs, 
the intrinsic excitation and emission wavelengths of AuNPs can 
be facilely tuned from visible region to the second near–infrared 
window (NIR-II, 1000–1700 nm) [9, 10], facilitating the bioim-
aging investigation at both cellular and in vivo levels. Besides, 
the ultrasmall size endows the AuNPs with the characteristics 
of small molecules, while maintain the properties of inorganic 
nanoparticles with modifiable ligand layers towards multifunc-
tional chemical modification [11, 12]. The quantum confinement 
effect resulting from the ultrasmall size also allows ultrasmall 
AuNPs to undergo electron transitions under laser excitation, 
enabling the possibility of optical imaging and photodynamic 
therapy [13–15]. Furthermore, the high atomic number of Au 
(Z = 79) provides high X-ray absorption coefficient, making ultr-
asmall AuNPs suitable for computed tomography (CT) imaging 
and radiation sensitization, thus possessing both imaging and 
therapeutic capabilities [16–19].

Currently, various large-sized plasmonic AuNPs [20–23] 
and small molecules (e.g., dyes and drug molecules) [24–26] 
have been developed for the biological imaging, diagnostics, 
and therapeutics. Many excellent review articles have sum-
marized the factors influencing the biological interaction and 
imaging performances of the plasmonic AuNPs and small 
molecules [27–32]. However, a comprehensive review spe-
cifically focused on the biological interactions of the ultr-
asmall AuNPs is scarce. Serving as a bridge between small 
molecules and plasmonic AuNPs, the ultrasmall AuNPs 
possess the advantages of both small molecules and nano-
particles. Inside the biological system, ultrasmall AuNPs can 
rapidly distribute throughout the body like small molecules, 
undergo rapid renal clearance, exhibit low non-specific 
organ accumulation, and avoid long-term toxicity [33, 34]. 
On the other hand, the ultrasmall AuNPs can also exhibit 
long circulation in the bloodstream, similar to traditional 
inorganic nanoparticles, and accumulate at tumor or dis-
eased sites through the enhanced permeability and retention 

(EPR) effect [35, 36]. The emergence of ultrasmall AuNPs 
creates significant opportunities for the application-driven 
surface engineering strategies of ultrasmall AuNPs to regu-
late their biological behaviors and bioimaging performance 
towards future clinic translation [37, 38].

The ultrasmall AuNPs are formed from the aggregates 
of small amount of gold atoms protected by surface ligands 
(e.g., thiolate [39, 40], phosphine [41, 42] and alkynyl [43, 
44]). In the past two decades, the synthesis of ultrasmall 
AuNPs have been rapidly developed [45–47], which can 
be categorized into two main synthetic routes: (i) gold 
salt (complex) reduction, and (ii) etching from plasmonic 
AuNPs. With the advances in the fundamental understand-
ing of the underlying reaction process in size control (e.g., 
kinetic control and thermodynamic selection) [48, 49] and 
structural determination (e.g., X-ray crystallography and 
mass spectrometer) [50–54], the controlled synthesis of ultr-
asmall AuNPs have been widely reported, which showed 
not only enriched sizes, compositions, and structures but 
also attractive optical and biological properties for various 
advanced biomedical applications [55–57]. Since many 
excellent reviews have summarized the recent progress in the 
facile and robust synthesis of ultrasmall AuNPs with high 
reproducibility [58–64], we will not focus on the synthetic 
strategies in this review.

In this review, we summarize the recent progress of ultr-
asmall AuNPs in biological interactions and the related 
imaging performance (Fig. 1). We firstly discuss the cel-
lular interaction of ultrasmall AuNPs at the cellular level. 
Furthermore, we discuss the organ interactions of ultras-
mall AuNPs, especially emphasized on the kidney and liver 
interactions. We also present the recent strategies for passive 
and active tumor targeting of ultrasmall AuNPs. Addition-
ally, we elucidate the imaging performance of ultrasmall 
AuNPs including fluorescence imaging, CT imaging and 
other imaging modes. Finally, we critically comment on 
the biological interactions of ultrasmall AuNPs and present 
future perspectives to accelerate their clinical applications 
in address many challenges in the health field including dis-
ease diagnosis, monitoring, and treatment. By summariz-
ing the factors that influence the biological interactions and 
imaging performance of ultrasmall AuNPs, we believe that 
with a better understanding of the in vivo interactions of 
the ultrasmall AuNPs will provide insight into the in vivo 
imaging and treatment, and ultimately will achieve clinical 
translation.



Nano-Micro Lett.           (2024) 16:44  Page 3 of 30    44 

1 3

2  Cellular Interactions

Nanoparticles play important roles in mediating the bio-
logical interactions, which requires a comprehensive 
understanding of the nano–bio interactions [69, 70]. 
Therefore, it is of great significance to investigate cellular 
uptake and trafficking mechanisms between nanoparticles 
and cells. The cellular interactions initially occur at the 
interface between cell membranes and nanoparticles, and 
would substantially affect the subsequent subcellular inter-
actions and outcomes at the cellular level [71, 72]. Cellu-
lar uptake and intracellular transport highly depend on the 
surface physical and chemical properties of the ultrasmall 
AuNPs [73]. The fundamental understanding of the factors 
that affect cellular uptake, organelle distribution, and cyto-
toxicity will provide a foundation for further elucidations 
of the nano–bio interactions [72, 74, 75]. In this review, 
the factors including surface charge, surface coverage, 
hydrophobicity, surface functionality and concentration 
effect, will be summarized [76–81].

2.1  Surface Charge Effect

Electrostatic attraction plays important role in governing 
the cellular interactions of ultrasmall AuNPs, resulting from 
the negatively-charged phospholipids on the cell membrane 
[82–84]. Therefore, surface charge significantly affects cel-
lular interactions of ultrasmall AuNPs. Typically, large-sized 
positively-charged AuNPs (e.g., 17.7 ± 1.6 nm) exhibited the 
much higher cellular uptake efficiencies than those of the 
neutral or negatively-charged ones, The uptake efficiency of 
positively-charged AuNPs was 5–10 times higher than that 
of neutral or negatively-charged AuNPs within 24 h [85]. 
In the investigation of the size-dependent cellular uptake 
of AuNPs, Rotello et al. investigated the effect of surface 
charge including positive, neutral, and negative on the cel-
lular interactions of AuNPs with the core sizes of 2, 4 and 
6 nm, respectively (Fig. 2a) [86]. The results demonstrated 
that the positively-charged AuNPs exhibited significantly 
higher cellular uptake efficiencies than those of the neutral 
or negatively-charged ones. However, the cellular uptake 
efficiencies of positively-charged AuNPs increased with 
the size increased from 2 to 6 nm, significantly different 
from those of the neutral or negatively-charged ones with 
decreased cellular uptake efficiencies. In addition, the inter-
nalization mechanisms were also different: the amphiphilic 
neutral AuNPs with size of 2 and 4 nm were mainly inter-
nalized through a membrane fusion mechanism, while the 
large-sized ones (6 nm) involved a clathrin-mediated endo-
cytosis/lipid raft pathways, indicating that the internalization 
mechanisms undergo a size-dependent transition within the 
small size range. Therefore, the positively-charged ultrasmall 
AuNPs showed a significantly high cellular uptake, consist-
ent with the plasmonic large ones, however, the interaction 
mechanisms require more systematic investigation.

Additionally, ultrasmall AuNPs with different surface 
charges can lead to different toxicities. Hussain et al. synthe-
sized ultrasmall AuNPs (~ 1.5 nm) with different charges to 
investigate the relationship between surface charge and cel-
lular toxicity [89]. The half maximal inhibitory concentra-
tion (IC50) value of both positively and negatively-charged 
AuNPs were less than 10 μg  mL−1, while the neutral ultras-
mall AuNPs had an IC50 value of 25 μg  mL−1. All the ultras-
mall AuNPs showed dose-dependent toxicity but with differ-
ent mechanisms. Both the positively-and negatively-charged 
AuNPs induced cell death through apoptosis, whereas the 
neutral AuNPs caused cell necrosis. To effectively utilize the 

Fig. 1  Summary of the biological interaction and imaging of ultr-
asmall AuNPs in this review Imaging Performance: fluorescence 
imaging [65]. (Copyright (2020), John Wiley and Sons), photoa-
coustic imaging [66]. (Copyright (2023), Royal Society of Chemis-
try), Raman imaging [67]. (Copyright (2023), American Chemical 
Society), CT Imaging [68]. (Copyright (2015), American Chemical 
Society)
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strong membrane binding capability of amino-functionalized 
ultrasmall AuNPs (AuNPs–NH2, 2.5 ± 0.4 nm) as well as 
reduce toxicity, Kim et al. proposed a host–guest system that 
utilized supramolecular chemistry for intracellular activation 
[90]. Threading of cucurbit[7]uril (CB[7]) on the surface of 
AuNPs-NH2 reduced the cytotoxicity via endosome seques-
tration, which increased the IC50 from 1.3 to 50 mM. The 
therapeutic effect was then induced through the introduction 
of 1-adamantylamine (ADA) to release AuNPs-NH2, result-
ing in in situ cytotoxicity of AuNPs-NH2.

pH regulates many cellular interaction processes and is 
considered as an indicator of disease progression [91, 92]. 
The strategies of pH-stimulated charge change of ultrasmall 
AuNPs were also developed. Zheng et al. synthesized ultras-
mall AuNPs with pH-dependent membrane adsorption using 
the surface ligands of both GSH and cationic cysteamine 
(GC-AuNPs, Fig. 2b) [87]. The introduction of cysteam-
ine ligand on the surface of GC-AuNPs induced the signifi-
cantly decrease in negative charges with zeta potential values 
increased from − 29.8 ± 1.8 mV at pH 7.4 to − 15.7 ± 1.7 mV 
at pH 5.3, which caused significant enhancement in 

membrane adsorption at low pH values (e.g., pH 5.3). 
Rotello et al. synthesized pH–responsive ultrasmall AuNPs 
(2 nm) using alkoxyphenyl acylsulfonamide amide ligands 
[93]. The pH-responsive AuNPs exhibited selective cellular 
uptake and cytotoxicity. When the pH decreased from 7.4 
to 6.0, the neutral AuNPs became positively charged, result-
ing in both increased toxicity and cellular uptake (~ four-
fold). The pH-responsive ultrasmall AuNPs demonstrate 
the potential for selective treatment at tumor sites. In our 
group, using a conventional cationic polymer chitosan (CS, 
isoelectric point at 6.5) as a template [88], we constructed 
a pH-responsive self-assembled AuNPs (AuNPs@CS) with 
reversibly pH-dependent swelling and compacting struc-
tures at physiological pH range (pH 6.5–7.4), which showed 
pH-responsive cellular interaction capability and sensitive 
emission response toward subcellular location (Fig. 2c). At 
low pH values (e.g., pH < 6.5), the AuNPs@CS assembled 
into dense nanostructures (~ 23.5 nm) with fluorescence 
intensity increase, while at high pH values (e.g., pH 7.4), 
AuNPs@CS transformed into weakly emitting swelled struc-
tures and possessed the ability to escape from lysosomes. 

Fig. 2  The effect of surface charge on cellular interactions of ultrasmall AuNPs. a Interplay of size and surface functionality on the cellular 
uptake pathway of ultrasmall AuNPs [86]. Copyright (2015), American Chemical Society. b Ultrasmall AuNPs with pH–dependent membrane 
adsorption [87]. Copyright (2011), American Chemical Society. c Schematic illustration of the endocytosis and lysosome escape of AuNPs@CS 
[88]. Copyright (2019), American Chemical Society



Nano-Micro Lett.           (2024) 16:44  Page 5 of 30    44 

1 3

This pH-responsive self-assembled AuNPs@CS can be uti-
lized for enhanced cellular uptake and intracellular optical 
tracking.

2.2  Surface Coverage Effect

The surface chemistry of ultrasmall AuNPs plays key roles 
in the establishment of interfaces between the metal core 
and cell surface. The surface coverage of AuNPs provides 
versatile toolboxes to modulate the cellular interactions of 
ultrasmall AuNPs. The cellular interactions of ultrasmall 
AuNPs (~ 2.0 nm) with different surface coverages (e.g., 
29%, 32%, and 47%) were investigated in our group (Fig. 3a) 
[94]. The results showed that lower surface coverage (e.g., 
29%) resulted in high membrane binding percentage (~ 82%, 
at 6 h incubation) with low cellular uptake, whereas high 
surface coverage (e.g., 47%) led to low membrane binding 
percentage (~ 36%) with high cellular uptake. In addition, 
the AuNPs with low surface coverage showed faster cel-
lular interaction than those of the ones with high surface 

coverage. For larger-sized nanoparticles, ligand density 
mediates the conformational fluctuations of ligands, protein 
absorption repulsion, and cell adhesion strength [95, 96], all 
of which can regulate cellular interactions of larger-sized 
nanoparticles. Burda et al. investigated the effects of ligand 
density and molecular weight on large-sized AuNPs on cel-
lular uptake and toxicity [97]. The AuNPs with the same 
core size (6 ± 2.5 nm) was prepared by adjusting the ratio 
of PEG:AuNPs ratios (100–300:1, PEG:AuNPs ratios) and 
molecular weight (0.55, 1, 2, and 5 kDa). With the increase 
of PEG:AuNPs (2000 Da) ratio (from 200:1 to 800:1), the 
viability of HeLa cells incubated with PEGylated AuNPs 
increased. When the proportion of PEGylated AuNPs syn-
thesis reached the critical stability ratio, the cell viability 
reached the best. Moreover, cellular uptake decreased with 
the increase of PEG molecular weight. Therefore, by adjust-
ing the surface ligand density of AuNPs, the physical and 
physiological properties can be adjusted and optimized for 
biomedical applications. At the ultrasmall size range, nano-
particles possess a larger surface area, amplifying the role 
of surface ligands, and the influence of ligand density on the 

Fig. 3  Effects of the surface coverage and hydrophobicity on the cellular interactions of ultrasmall AuNPs. a Surface coverage-regulated cellu-
lar interaction of ultrasmall AuNPs [94]. Copyright (2019), American Chemical Society. b Effect of hydrophobicity on nano–bio interactions of 
zwitterionic ultrasmall AuNPs [102]. Copyright (2018), American Chemical Society
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cellular interactions of ultrasmall nanoparticles cannot be 
ignored. The modulation of surface coverage in ultrasmall 
AuNPs can be utilized to control binding sites with cells.

2.3  Hydrophobic Effect

With the unique internal hydrophobic and external hydro-
philic structure of the phospholipid bilayer on the cell mem-
brane, the hydrophobicity of AuNPs can significantly regu-
late the cellular interaction [98]. For hydrophobic AuNPs, 
the large sized AuNPs (> 10 nm) can enter the cell through 
an active process [99, 100], but the small ones can be hin-
dered and trapped by the phospholipid bilayer. Baulin et al. 
conducted more detailed experimental and theoretical stud-
ies on the cell membrane interaction between hydrophobic 
AuNPs functionalized with dodecanethiol ligands with sizes 
of 2, 4 and 6 nm, respectively [101]. The results showed that 
6 nm AuNPs could spontaneously translocate the bilayer 
within milliseconds, while both 2 and 4 nm AuNPs were 
trapped within the bilayer. To achieve rational utilization 
of hydrophobicity on the ultrasmall AuNPs, Zheng et al. 
increased the hydrophobicity on the surface of hydrophilic 
glutathione-coated AuNPs (GS-AuNPs, ~ 1.8  nm) with 
hydrophobic octanethiol through ligand exchange, and 
investigated the impact of partial hydrophobicity of cellu-
lar interactions of ultrasmall AuNPs (Fig. 3b) [102]. After 
ligand exchange, the formed amphiphilic AuNPs exhibited 
higher affinity for the cell membrane with an increased fluo-
rescence intensity of 18 times. The hydrophobicity induced 
van der Waals forces overcame the electrostatic repulsion of 
GS-AuNPs, enhancing the affinity to the cell membrane and 
promoting cellular uptake dynamics.

The increased hydrophobicity of ultrasmall AuNPs pro-
vides a facile pathway for improving the cellular interactions 
of ultrasmall AuNPs. However, hydrophobic AuNPs can 
activate the innate immune system. Rotello et al. quantified 
the relationship between the hydrophobicity of ultrasmall 
AuNPs (~ 2 nm) and immune response [103]. A series of 
ultrasmall AuNPs with log P values, the hydrophobic values 
of the headgroups, ranging from 0.63 to 5.35. At the cel-
lular level, hydrophobicity was essentially positively corre-
lated with immune response. At the in vivo level, when the 
log P value is less than 1.95, an increase in hydrophobicity 
led to an increased immune response. However, when the 
log P value reached 3.77, the dependence of hydrophobic 

immunogenicity becomes less evident due to the poor bio-
distribution of highly hydrophobic AuNPs. Hydrophobic 
ultrasmall AuNPs can cause cellular toxicity. Chompoosor 
et al. investigated the relationship between hydrophobicity 
and cellular toxicity of ultrasmall AuNPs [104]. They syn-
thesized a series of hydrophobic ultrasmall AuNPs (~ 2 nm) 
after a quaternary ammonium functionalization with a sys-
tematically varied hydrophobic alkyl tail (C1–C6). As the 
number of alkyl groups increased from C1 to C6, the IC50 
value decreased from 6 to 0.71 μM. An increase of hydro-
phobicity enhanced the interaction of ultrasmall AuNPs with 
the phospholipid bilayer on the cell membrane. However, 
the high hydrophobicity can also cause toxicity and acti-
vate immunogenicity. Therefore, a balanced hydrophobicity 
should be considered to elicit immune responses and cel-
lular toxicity of ultrasmall AuNPs before the biomedical 
applications.

2.4  Surface Functionality Effect

With the sharply shrunken size, surface functionalization of 
the ultrasmall AuNPs is extremely important in the enchant-
ment of cellular interactions in a selective manner toward 
different types of cells, and further change subcellular dis-
tribution. Currently, various surface functionalization strate-
gies have been reported, such as the bioconjugation of tar-
geted peptide [105–107], DNA [108], and antibodies [109, 
110]. In our group, by taking advantages of phosphorothio-
ates (ps)-modified DNA (psDNA) as a template [111], we 
reported a facile strategy in the in situ controlling the surface 
functionalization of NIR-emitting AuNPs (1.3 to 2.6 nm) 
with a discrete number of DNA (e.g., 1 and 2) (Fig. 4a). 
After hybridization with the sgc8c aptamer (Apt-AuNPs) 
that targets PTK7 proteins, overexpressed on the membranes 
of CCRF-CEM cells, the Apt-AuNPs showed significantly 
specific targeting ability towards CCRF-CEM cells over the 
human A549 cells unexpressed PTK7 proteins. Zhu et al. 
synthesized a methionine-functionalized ultrasmall AuNPs 
(Met-AuNPs, ~ 2.3 nm) for selective targeting of the over-
expressed L-type amino acid transporter protein in A549 
tumor cell over the WI-38 cells [112]. In their subsequent 
work, they introduced a lipophilic cation (4-mercaptobutyl) 
triphenyl phosphonium bromide (MTPB) onto  Au18SG14 to 
realize the ligand-regulated subcellular distribution in mito-
chondria from lysosome [113].
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2.5  Concentration Effect

The investigation of the concentration-dependent biologi-
cal behavior at the cellular level is also of great importance 
towards reduced the systematical toxicity [114–118]. The 
concentration variation can change the cellular interac-
tions of ultrasmall AuNPs. In our group, we discovered 
that the NIR-emitting AuNPs co-coated with both GSH 
and cell-penetrating peptide CR8 (CR–AuNPs) showed a 
concentration-dependent subcellular distribution (Fig. 4b) 
[119], which exhibited a strong membrane-binding at high 
concentration (e.g., > 100 nM) but more endocytosis for 
mitochondria targeting at the low concentration region 
(e.g., < 10 nM). As a result of the concentration-dependent 
subcellular distribution, the ultrasmall CR–AuNPs showed 
photocytotoxicity in the relative low concentration region 
(e.g., 1 nM) after the light irradiation to generate singlet 
oxygen (1O2). This discovery facilitated the fundamental 

understanding of the concentration-dependent cellular 
interactions and potential cytotoxicity of ultrasmall AuNPs 
for future diagnosis and treatment. The fundamental under-
standing of the cellular interactions of ultrasmall AuNPs 
in more details can provide an insight towards the compli-
cated interactions of AuNPs upon the living organisms, 
facilitating their clinical translation.

3  Organ Interactions

When the nanoparticles are administrated into the body, 
most nanoparticles cannot transport to the intended disease 
tissue and are sequestered by the reticuloendothelial system 
(RES) organs (e.g., liver and spleen) or eliminated though 
the kidneys [120, 121]. The liver acts as a major RES organ 
that sequesters most (up to 90% ID) of the administered 
plasmonic AuNPs (> 6 nm) from bloodstream [122, 123]. 
Kidneys are a major organ for blood filtration and clearance 

Fig. 4  Effect of surface functionality and concentration on cellular interactions of ultrasmall AuNPs. a Apt-AuNPs with strict DNA valence to 
binding specific PTK-7 proteins [111]. Copyright (2020), American Chemical Society. b Concentration–dependent subcellular distribution of 
ultrasmall AuNPs [119]. Copyright (2020), John Wiley and Sons
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of small AuNPs (e.g., < 6 nm), which also play a key role in 
governing the transport and clearance [124, 125]. A compre-
hensive understanding of the nanoparticle–liver interaction 
and nanoparticle-kidney interaction provides an overview 
of recent strategies on the precise control of off-target nan-
oparticle clearance to enable longer blood circulation and 
enhance transport in the target tissues.

3.1  Kidney Interaction

When the ultrasmall AuNPs enter the kidneys through 
bloodstream, they are firstly filtered through glomerulus, 
followed by entering the proximal tubules [126, 127]. Then 
the ultrasmall AuNPs pass through the Henle loop, distal 
tubules and collecting ducts, and finally excrete through 
ureter into the bladder (Fig. 5a) [128]. The glomerular fil-
tration barrier, as a “size cutoff” slit [129], retains larger 
nanoparticles (e.g., > 6 nm) in the body, while the ultrasmall 
AuNPs with sizes < 3 nm can be rapidly excreted through 
the kidney’s glomerular filtration. Zheng et al. discovered 
that in the sub–nanometer size regime [130], the glomeru-
lar filtration barrier could serve as an atomically precise 

“bandpass” filter, significantly slowing down the clearance 
rate of the few-atom AuNCs (e.g.,  Au18,  Au15 and  Au10–11). 
The renal clearance rates of  Au18,  Au15, and  Au10–11 were 
10.79%, 6.03%, and 5.29% injection dose (ID), respectively, 
significantly low than those of  Au25 early elimination stage 
(within 2 h post-injection (p.i.), 46.71% ID), which indi-
cated that only a few-atom decrease of the AuNCs resulted 
in a 4–9 times reduction in renal clearance rate. It was then 
found that the smaller AuNCs were readily trapped by the 
glomerular glycocalyx rather than the larger AuNPs. This 
glomerular glycocalyx interaction of sub-nanometer AuNCs 
slowed down the extravasation from normal blood vessels 
and enhanced the passive targeting to tumors through the 
EPR effect. This discovery demonstrates the size precision in 
the nanoparticle–kidney interaction, bringing forward guid-
ance to develop nanomedicines for many diseases such as 
the glycocalyx dysfunction.

The filtered AuNPs then flow from the Bowman space 
into the proximal tubules (PTs) [131–133]. PTs are covered 
with a dense brush border composed of negatively charged 
microvilli that extend into the tubular cavities, governing 
the subsequent active uptake, reabsorption, and metabolism 

Fig. 5  Mechanisms of kidney interaction. a Schematic diagram of the kidney structure and the corresponding glomerular filtration of AuNPs 
with different sizes. b The tubular reabsorption of the renal-clearable AuNPs in acidic kidneys [136]. Copyright (2021), John Wiley and Sons
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of the filtered AuNPs. The proximal tubular epithelial cells 
(PTECs) can transport AuNPs from the blood into the tubu-
lar lumen and urine through transporter-mediated influx- and 
efflux-processes. Zheng et al. discovered an unrecognized 
mechanism for eliminating ultrasmall AuNPs utilizing 
mitotically quiescent PTECs [134]. Upon the PEGylated 
AuNPs (~ 2.6 nm) entering the PTs, the ultrasmall AuNPs 
were internalized by PTECs through endocytosis. These 
endocytosed AuNPs could even partially transform into 
large nanoassemblies (200–300 nm) inside the lysosomes/
endosomes. By squeezing the balloon -like extrusions 
(~ 5 µm) through dense microvilli, the intact endocytosed 
AuNPs were transported into the extrusions along with other 
organelles and then pinched off the extrusions from the cell 
membrane into the lumen. Within a month, PTECs re-elim-
inated > 95% of the endocytosed AuNPs and nanoassem-
blies into the urine. This organelle–extrusion mechanism 
represents a new nanoparticle–elimination pathway in the 
kidneys, which is also an intrinsic “housekeeping” function 
of normal PTECs to self-renew intracellular organelles.

3.2  Interaction of Injured Kidney

Kidney disease is one of the great threats to health, but it 
is difficult to differentiate using the routine clinical mark-
ers (e.g., blood urea nitrogen and creatinine) at its early 
stages, resulting in late-stage diagnosis and lack of early 
intervention [128, 135]. Typically, renal-clearable ultrasmall 
AuNPs are rapidly excreted into urine after glomerular fil-
tration [64], which show relatively weak interaction with 
the renal compartments. Renal tubular cells (RTCs) are the 
primary target for kidney injury and disease progression. In 
our group, we designed luminescent PEGylated AuNPs co-
coated with a pH-responsive zwitterionic imidazole group 
(1.9 nm) [136], which exhibited charge-reversal and aggre-
gation capabilities in acidic kidney microenvironments. 
The synthesized AuNPs showed a charge–reversal ability 
from negative charge (− 10.9 ± 1.0 mV) to positive charge 
(17.4 ± 1.6 mV) with pH decreased from pH 7.4 to pH 5.5. 
In addition, the HD of AuNPs was 3.5 ± 0.4 nm at pH 7.4, 
but significantly increased to 1048.7 ± 225.7 nm at pH 5.5. 
In an acidosis-induced early kidney injury model, the acidic 
kidney environment enhanced the reabsorption of AuNPs, 
allowing more AuNPs to in situ aggregate in the RTCs. The 
prolonged retention of AuNPs in the injured kidney provided 

both enhanced ultrasound and fluorescence signals for non-
invasively imaging of kidney injury with precise anatomical 
information. The discovery of tubular reabsorption of the 
renal-clearable metal nanoparticles in the acidic kidneys 
opened a new pathway for early diagnosis and treatments of 
specific renal diseases (Fig. 5b).

3.3  Liver Interaction

Liver is the largest solid organ for detoxification in living 
body [137]. Normal liver sinusoidal endothelial cells typi-
cally show fenestrations of 50–200 nm in diameter [138], 
favorable for the extravasation of ultrasmall AuNPs (< 3 nm) 
before the entrance of the space of Disse. The entered AuNPs 
interact with hepatocytes and then are transported through 
transcytosis into the bile ducts, ultimately being eliminated 
from the body through the intestines [139]. Understanding 
the liver interaction of ultrasmall AuNP is critical to the 
utilization of ultrasmall AuNPs in the disease diagnosis and 
treatment. Surface charge plays an important role in govern-
ing the liver interaction of ultrasmall AuNPs. The surface 
charge effect on the liver inter on biological distribution is 
explored. Vachet et al. investigated the sub–organ distribu-
tions of different charged ultrasmall AuNPs (2 nm) includ-
ing positively charged, negatively charged and neutral ones 
(Fig. 6a) [124]. It was found that positively charged AuNPs 
accumulated in hepatocytes and endothelial cells, while the 
neutral and negatively charged ones exhibited a more wide-
spread distribution throughout the liver (at 24 h p.i.). The 
further quantitative analysis of the Au element signals in live 
tissue slices demonstrated that positively charged AuNPs 
distributed in a more heterogeneous pattern than those of 
the negatively charged or neutral ones. Therefore, surface 
charge is a crucial factor in determining the nanoparticle-
liver interactions. Besides the influence of charge on the 
liver interaction of ultrasmall AuNPs, variations within the 
sub-nanometer regime (~ 0.5 nm) also affect the liver inter-
action of ultrasmall AuNPs. Although ultrasmall AuNPs can 
be quickly eliminated through the kidneys, the RES system 
(e.g., liver and spleen) serves as a size-dependent barrier 
in the removal of ultrasmall AuNPs from the bloodstream 
[140]. In our group, we investigated the size-dependent sub-
liver distribution of ultrasmall AuNPs in the sub-nanometer 
regime (Fig. 6b) [141]. We firstly developed a in situ syner-
getic synthesis and separation strategy to achieve large–scale 
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atomically precise  Au25MPS18 (MPS = sodium 3-mercapto-
propanesulphonate) and AuNPs with few sub–nanometer 
differences (from 2.4 to 1.8 nm and finally to 1.4 nm). We 
discovered that the 2.4-AuNPs (with sizes of 1.4–2.4 nm) 
distributed heavily throughout the liver (e.g., hepatic Kupffer 
cells and hepatic sinusoids) and spleen (e.g., splenic mac-
rophages both in the red pulp and white pulp, splenic venous 
sinus) at 6 h p.i. The 1.8-AuNPs (with sizes of 1.4–1.8 nm) 
mainly appeared in the hepatic sinusoids and splenic venous 
sinus. However, the atomically precise  Au25MPS18 with a 
size of 1.4 nm were hardly found in the liver or spleen. Fur-
ther investigation revealed that a sub–nanometer difference 
in size would significantly increase the elimination rates 
of the ultrasmall AuNPs in liver and spleen. Therefore, the 

in vivo phagocytosis and traps of ultrasmall AuNPs in the 
hepatic Kupffer cells and splenic macrophages were a pre-
cisely size-dependent in the sub-nanometer regime.

In addition to being sequestered in the liver, ultrasmall 
AuNPs can also be biotransformed by the abundant GSH in 
liver. Zheng et al. conducted a research on the GSH-medi-
ated detoxification mechanism of ultrasmall AuNPs [142]. 
They designed a thiol-activatable fluorescent nanoprobe, 
 ICG4–GS–Au25 (ICG = indocyanine green), which can bind 
serum proteins and transport to liver sinusoids. The ICG 
emission was quenched due to the electron transfer between 
ICG and  Au25, but the ICG fluorescence turned on instantly 
after the detachment of ICG under the activation of GSH. 
With this principle, the in vivo liver biotransformation 

Fig. 6  Effects of ultrasmall AuNPs on the sub–organ distribution. a Surface charge controls the sub-organ biodistributions of ultrasmall AuNPs 
in liver [124]. Copyright (2016), American Chemical Society. b Precise size-dependent sub–organ distribution in liver and spleen [141].Copy-
right (2023), John Wiley and Sons
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kinetics was non-invasively imaged. It was demonstrated 
that glutathione efflux from hepatocytes led to concen-
trated glutathione and cysteine in liver sinusoids to trans-
form surface chemistry of the nanoparticles, which signifi-
cantly increased the resistance to serum protein absorption 
and changed the blood retention, targeting and clearance. 
In their subsequent work, they utilized  ICG4-GS-Au25 
probe to non-invasively monitor the GSH depletion in liver 
through GSH-mediated conversion [143]. A linear relation-
ship between fluorescence intensity and GSH concentration 
was constructed, and the depletion of liver GSH could be 
detected through both fluorescence imaging and blood test-
ing. In our group, with the abundant GSH in liver sinusoids, 
we developed a facile strategy to activate the emission of 
ultrasmall AuNPs (~ 1.4 nm) with low background for imag-
ing of early kidney injury (Fig. 7a) [144]. Quantitatively 
activated emission at ∼ 1026 nm was achieved from the 
ligand exchange of triphenylphosphine–3,3′3–trisulfonic 
acid (TPPTS)–coated AuNPs with GSH. The in vivo GSH-
exchanged AuNPs show enhanced interactions with acidic 
renal tubular epithelial cells, which resulted in noninvasive 
monitoring of acidosis-induced early kidney injury with both 

high sensitivity (contrast index, ~ 3.9) and long-time imaging 
window (> 6.5 h).

Liver sequestration is one of the main obstacles to the 
efficient nanoparticle transport to the disease sites [146]. 
To avoid the phagocytosis of nanoparticle in liver, in our 
group, we designed ultrasmall luminescent gold–silver 
bimetallic NPs (Fig. 7b) [145], which could be fast trans-
formed in hepatic sinusoidal microenvironment with abun-
dant both GSH and oxygen  (pO2 =  ~ 44.4 mmHg). With the 
help of the active silver atoms, the gold–silver bimetallic 
NPs (~ 2.3 nm) transported quickly into the liver right after 
iv injection, and then synergistically reacted with oxygen 
and GSH in the hepatic sinusoid to reduce the serum pro-
tein binding. Due to the rapid biotransformation in liver, the 
gold–silver bimetallic NPs traveled from liver back into the 
blood and finally cleared out of body through renal clear-
ance. In sharp contrast, most of the monometallic AuNPs 
were rapidly sequestrated by Kupffer cells as a result of the 
slow biotransformation. The rapid sinusoidal biotransforma-
tion of gold–silver bimetallic NPs avoided the phagocytosis 
in liver, which significantly prolonged the blood circulation 
and further enhanced the targeting efficiency at the disease 
site. The signal–to–noise ratio (S/N) of tumor to liver tissue 

Fig. 7  Mechanism of liver interaction with ultrasmall AuNPs. a GSH-activated emission of ultrasmall AuNPs for early kidney injury diagnosis 
[144]. Copyright (2022), American Chemical Society. b Rapid biotransformation of ultrasmall bimetallic nanoparticles in hepatic sinusoids 
[145]. Copyright (2023), American Chemical Society
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for gold–silver bimetallic NPs was ~ 2.3, which was ~ 6.5 
times higher than that of the monometallic AuNPs. It is 
very interesting to note that the liver sequestration can be 
turned into a beneficial nanomedicine storage with the fast 
biotransformation in sinusoids for manipulating the transport 
efficiency to disease site.

4  Tumor Interactions

The development of nanoparticles provides new strategies 
for cancer diagnosis and treatment [147, 148]. Compared 
to the small molecules, nanoparticles have a longer blood 
circulation time, which increases their retention in disease 
sites via EPR effect [149, 150]. However, significant accu-
mulation of nanoparticles in RES organs (e.g., liver, spleen 
and bone) also can lead to long–term toxicity risk, result-
ing in low targeting specificity in disease sites [151, 152]. 
Tumors are structurally heterogeneous with nonuniformly 
leaky vasculature and dense interstitial structures that hinder 
the deep penetration of large nanoparticle into tumor tissue, 
especially in areas distant from the vasculature. Ultrasmall 
AuNPs can effectively address the challenges of fast distribu-
tion and low penetration from the large nanoparticles [153, 
154], which also combines both of the advantages of small 
molecules (e.g., efficient renal clearance and low nonspecific 
tissue accumulation) and conventional nanoparticles (e.g., 
long blood circulation and EPR effect). In addition, as com-
pared with other ultrasmall inorganic nanoparticles including 
quantum dots and semiconductor oxides (Table 1), the ultr-
asmall AuNPs were highly stable during the blood circula-
tion system, which showed faster and more efficient renal 
clearance with lower nonspecific accumulation in the heathy 
liver and spleen. Furthermore, it was found that the ultras-
mall AuNPs exhibited a more satisfactory balance between 
the tumor-targeting efficiency and rapid clearance, providing 
great clinical translation opportunities into the in vivo disease 
imaging and treatment.

4.1  Passive Targeting

The ultrasmall AuNPs exhibit fast renal clearance and 
two-compartment pharmacokinetics like small molecules. 
Whether the ultrasmall AuNPs retain the EPR effect, a 
unique feature from conventional nanoparticles in pas-
sive tumor targeting, is critical to the future biomedical 

applications. To unveil the EPR effect of ultrasmall AuNPs, 
using zwitterionic GSH as surface ligand to minimize 
nonspecific RES uptake, Zheng et al. synthesized renal-
clearable ultrasmall GS-AuNPs (~ 2.5 nm) and conducted 
a detailed comparison in the passive tumor targeting with 
an organic fluorophore, IRDye 800CW [170]. They discov-
ered that the ultrasmall GS-AuNPs retained in the tumor 
at a concentration 10 times higher than the dye molecules 
(12 h p.i.), but the clearance rate from normal tissues is 3 
times faster than that of dye molecules (Fig. 8a). The much 
longer tumor retention time and faster normal tissue clear-
ance of ultrasmall AuNPs, indicated that the well-known 
EPR effect indeed existed ultrasmall AuNPs. The GS-
AuNPs (~ 2.6 nm) were further demonstrated to across the 
blood–brain barrier in the passive targeting of gliomas. By 
comparing the transport efficiency of 2.6-nm GS-AuNPs 
and 18-nm GS-AuNPs in glioma, the 2.6-nm GS-AuNPs 
accumulated in glioma via EPR effect with a targeting effi-
ciency (0.2 ± 0.04%ID/g) of 2.3 times higher than that of the 
18-nm AuNPs (0.08 ± 0.05%ID/g). The stronger EPR effect 
of 2.6-nm GS-AuNPs as compared to 18-nm GS-AuNPs 
was attributed to the higher vascular leakage of ultrasmall 
AuNPs to enter the glioma interstitium for a longer retention 
time in gliomas. Since GSH contains more than one anchor-
ing groups (e.g., –SH, –COOH and –NH2) towards the gold 
surface, in our group, we demonstrated that not only the 
strong anchoring site of S-Au, but also the weak anchoring 
sites from N-Au and COO-Au showed significant influences 
to the passive tumor targeting of GS-AuNPs [171]. The more 
anchoring sites of COO-Au and more exposed surface –NH2 
led to prolonged blood circulation and passive tumor tar-
geting efficiency (5.1 ± 0.6%ID  g−1), which was more than 
4.4 times than those of more anchoring sites of N-Au and 
more exposed –COOH (1.2 ± 0.08%ID  g−1). These results 
indicated the significance of the weak anchoring sites in the 
surface functionalization of nanoparticles.

PEGylation of nanoparticle is commonly used to reduce 
the nonspecific accumulation in organs and prolong the 
blood circulation [172, 173], which enhances the EPR 
effect in the passive tumor targeting efficiency. Zheng 
et al. compared the passive tumor targeting of PEGylated 
AuNPs (~ 2.3 nm) with the renal–clearable zwitterionic GS-
AuNPs (Fig. 8b) [160], and found that the tumor targeting 
efficiency of PEGylated AuNPs was 3 times higher than 
that of the zwitterionic ones. The high tumor-targeting effi-
ciency of the PEGylated AuNPs was attributed to enhanced 
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EPR of PEGylated AuNPs relative to zwitterionic AuNPs 
in the increased blood retention. Subsequently, a series of 
PEGylated ultrasmall AuNPs with a strong EPR effect were 
reported. Wu et al. utilized the miniprotein Min-23 as a 
template to synthesize Min − 23@AuNCs (1.8 nm) [174]. 
After the PEGylation, the pharmacokinetics of PEGylated 
Min − 23@AuNCs showed both extended distribution half-
life (from 14.9 to 18.8 ± 1.7 min) and elimination half–life 
(from 3.1 to 6.3 ± 0.8 h), which greatly increased the trans-
port to the tumors. Recently, commercial amphiphilic block 
copolymer (e.g., pluronic F127) with the PO hydrophobic 
core surrounded by hydrophilic PEG block surface was also 
developed as capping agent for the ultrasmall AuNPs to 
extend the blood circulation time and enhance the passive 
tumor targeting efficiency [175, 176]. In our group, using an 
amphiphilic block copolymer (ABC) pluronic F127 as tem-
plate, we developed a straightforward strategy for in situ fab-
rication of well–controlled gold nanoassemblies with ultras-
mall AuNPs (1.7 nm) encapsulated inside the hydrophobic 

core (Fig. 8c) [177]. The formed nanoassemblies showed 
long blood retention with tumor targeting efficiency as high 
as ~ 25.3%ID  g−1. Therefore, the well-designed PEGylation 
in the functionalization of ultrasmall AuNPs can greatly 
enhance their passive tumor targeting efficiency and trans-
port to the disease sites.

4.2  Active Targeting

The EPR effect can guide ultrasmall AuNPs transport into 
the tumor site with the blood flow. In order to increase 
the targeting efficiency of ultrasmall AuNPs at the tumor 
site and reduce the non-specific accumulations in healthy 
organs, various active targeting strategies have been 
advanced [178]. According to the chemical surface func-
tionalization strategies, the active targeting pathways of 
ultrasmall AuNPs can be divided into the following cat-
egories: receptor-mediated targeting, peptide-mediated 

Table 1  Comparison of biodistribution and tumor targeting efficiencies of the typical ultrasmall inorganic nanoparticles

NR not reported
a Prostate specific membrane antigen
b Diethylenetriaminepentaacetic acid
c MSA-SH:PEG-SH = 0.2:3
d Mercaptopropionic acid
e Bovine serum albumin
f Soybean phospholipid
g Polyvinylpyrrolidone

Nanoparticles Surface ligand Core/HD (nm) Time of 
p.i. (h)

Urine (%) Biodistribution (% ID  g−1) Refs.

Liver Spleen Tumor

GS-AuNPs GSH 1.7/2.1 24 50.5 3.7 ± 1.9 0.3 ± 0.1 NR [155]
GS-[198Au] AuNPs GSH 2.6/3.0 24  > 40 3.0 ± 0.5 1.8 ± 0.3 NR [156]
CY-PSMA-1-Au25 NCs PSMAa 1.5/3.0 4  > 20  < 3  < 53 8.9 [157]
Au@DTDTPA DTDTPAb 2.4/6.6 24  > 60  < 10  < 2  < 3 [158]
02PMIZ-AuNPs 02PMIZc 1.7/4.2 6  > 50  < 3  < 3 6.9 [159]
PEG-AuNPs PEG 2.3/5.5 12  > 30  < 5  < 5 8.3 [160]
GS-Au NCs GSH 1.5/2.4 48 NR  < 30  < 5  > 12 [161]
InAs/InP/
ZnSe QDs

MPAd NR 4 NR 42.6 10.3 11.0 [162]

Ag2S QDs BSAe 2.1/NR 24 NR 20  > 5 NR [163]
Cu2-xS NDs PEG  < 5/10 8 3(48 h)  > 50  > 35 3.6 [164]
Ti2N QDs SPf 4.8/NR 4 NR  > 20  < 3  > 10 [165]
Ag2S QDs GSH 4.2/NR 24 NR  > 5  > 5  < 1 [166]
Bi NPs PEG 3.8/NR 24 NR  > 17  > 28 6.26 [167]
WO3−x NPs NR 1.1/7 4 NR  > 14  > 13  < 3 [168]
PVP-ZrC NDs PVPg 5/NR 24  > 50%  > 15  > 12  < 10 [169]
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targeting, antibody-mediated targeting, and aptamer-medi-
ated targeting [147, 179].

4.2.1  Receptor‑mediated Targeting

Receptor-mediated targeting is a well-developed strategy 
to functionalize ultrasmall AuNPs in the active targeting 
of tumors by conjugation of ligands selectively binding 
to the overexpressed receptors on tumors [180, 181]. The 
widely investigated receptors for active targeting mainly 
involve hyaluronic acid (HA) receptors, transferrin (Tf) 
receptors, folate receptors and glucose transporters. HA 
[182, 183], main component of the extracellular matrix, 
is used to maintain the basic structure of cells, which can 
target the CD44 receptor, overexpressed on the tumor cell 
surface in the regulation of tumor angiogenesis and metas-
tasis. Li et al. utilized both electrostatic and hydrophobic 
effects to embed GS–AuNCs (2.5  nm) into negatively 
charged HA and cationic protamine (PROT) to generate the 

AuNC-HA-PROT nanocomposites [182], which were used 
to target CD44 receptors overexpressed on MDA-MB-231 
cells (Fig. 9a). Tf receptor is a cell membrane-associated 
glycoprotein [184], which is highly overexpressed on tumor 
cells with expression levels 100-fold higher than that of the 
average expression in normal cells. Yan et al. developed a 
Tf-functionalized AuNCs (Tf-AuNCs, 2.6 ± 0.5 nm)/gra-
phene oxide (GO) nanocomposite (TfAuNCs/GO), which 
showed a turn-on NIR emission (710 nm) towards HeLa 
cells for in vivo tumor imaging [185]. Folate receptor is also 
highly overexpressed on the surface of cancer cells [186]. 
Tian et al. utilized BSA-protected AuNCs conjugated with 
folic acid for targeted imaging of  FR+ve HeLa cells [187]. 
Glucose transporters overexpressed in the cancer cells can 
guide glycoconjugated ultrasmall AuNPs enter the cancer 
cells via active transport mechanisms. In our group, using 
1-thio-β-D-glucose as both the surface ligand and the reduc-
ing agent, we developed a facile in situ glycoconjugation 
strategy for the synthesis of NIR-emitting gold glycona-
noparticles (AuGNPs, ~ 2.4 nm) [188], which showed both 

Fig. 8  Passive tumor targeting of ultrasmall AuNPs. a Passive tumor targeting of renal–clearable GS-AuNPs [170]. Copyright (2013), Ameri-
can Chemical Society. b PEGylation and zwitterionization in the tumor targeting of ultrasmall AuNPs [160]. Copyright (2013), John Wiley and 
Sons. c Well-controlled gold nanoassemblies for efficient tumor targeting [177]. Copyright (2020), Springer Nature
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activity towards glucose transporters in cancer cells and pro-
longed blood circulation. The ultrasmall AuGNPs showed 
similar low nonspecific organ retention to that of the renal-
clearable GS-AuNPs, but ∼ 10 and 2.5 times higher in vitro 
and in vivo tumor-targeting efficiencies, respectively. This 
in situ glucose functionalization of ultrasmall AuNPs not 
only enhances the tumor targeting efficiency but also reduces 
non–specific enrichment in healthy organs.

4.2.2  Peptide‑mediated Targeting

During the tumor proliferation, new blood vessels are 
formed with integrin αVβ3 highly overexpressed in tumor 
cells [189, 190]. The Arg-Gly-Asp peptide (RGD) can 
specifically bind to integrin αVβ3, enabling active target-
ing of tumors. Xing et al. used cyclic RGD acid (cRGD) 
peptide as a template to synthesize AuNCs (1.7 ± 0.1 nm) 

Fig. 9  Active tumor targeting of ultrasmall AuNPs. a AuNC-HA-PROT nanocomposites targeting CD44 antigens were used for cell imaging 
and therapy [182]. Copyright (2019), American Chemical Society. b  Au4(RGD)3 inhibits human thioredoxin reductase activity via specifically 
binding of Au to Cys189 [191]. Copyright (2022), Elsevier. c Dual targeting luminescent AuNC-cRGD-Apt for tumor imaging and deep tis-
sue therapy [199]. Copyright (2016), Elsevier. d Tumor-acidity activated charge-reversal of ultrasmall AuNPs to achieve highly tumor-targeting 
specificity [159]. Copyright (2020), American Chemical Society
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(cRGD-AuNCs) for targeting αVβ3 integrin–positive cancer 
cells [190]. The accumulation of cRGD-AuNCs at tumor 
site could reach 6.4 ± 1.3% ID (at 4 h p.i.). In addition, the 
cRGD-AuNCs could be not only as a fluorescent nanoprobe 
to stain αVβ3 integrin-positive tumor cells but also a radio-
sensitizer for radiation cancer therapy. Gao et al. synthesized 
an  Au4 cluster  (Au4(RGD)3) functionalized with cRGD pep-
tide [191]. This  Au4 cluster firstly bound with human thiore-
doxin reductase (hTrxR) through both amino acid residues 
via electrostatic and van der Waals forces. Furthermore, the 
Au (I) from the metabolism of  Au4 cluster specifically bound 
to the thiolate of Cys189 of hTrxR protein, resulting in the 
inhibition of hTrxR activity and cell apoptosis. This study 
indicated that the cRGD–AuNCs could inhibit hTrxR activ-
ity (Fig. 9b).

4.2.3  Antibody‑Mediated Targeting

Antibodies can specifically bind to antigens to specifically 
target tumor tissues with enhanced therapeutic efficacy [192, 
193]. The monoclonal antibodies (mAb) used to improve 
the targeting efficiency of nanoparticles have been widely 
reported. Trastuzumab (Herceptin) is a mAb that targets the 
extracellular domain of the ErbB-2 receptor overexpressed 
in breast cancer. Irudayaraj et al. synthesized fluorescent 
BSA-protected AuNCs (~ 2 nm) conjugated with Herceptin 
(AuNCs-Her) [194], which were used for specific targeting 
in ErbB2 overexpressed breast cancer towards both imag-
ing and cancer therapy. Auguste et al. constructed a sensing 
nanoplatform with AuNCs-loaded liposomes after function-
alization of ErbB2/Her2 antibody [195], which were used 
for amplified colorimetric detection of HER2-positive breast 
cancer cells. The peroxidase–like activity of the nanoplat-
form adsorbed on HER2-positive breast cancer cells could 
be used to quantitatively measure the HER2-positive breast 
cancer cells.

4.2.4  Aptamer‑mediated Targeting

DNA aptamers are screened synthetic DNA oligonucleo-
tides that can bind to various specific targets [196]. Surface 
functionalization of DNA aptamers endows nanoparticle 
with unique ability to specifically recognize various targets. 
Aptamer AS1411 is one of the tumor-targeted DNA aptam-
ers [197, 198], targeting nucleolin protein located both on 

cancer cell surface and in nucleus. Chen et al. reported a 
nanoplatform conjugated AuNCs (~ 3.0 nm) with both cRGD 
and aptamer AS1411 (AuNC-cRGD-Apt) [199]. The com-
bination of aptamer–mediated active targeting of tumor tis-
sues and adapter-mediated targeting of the cytoplasm and 
nucleus was used for specific tumor targeting (Fig. 9c). 
MUC1 is an overexpressed transmembrane protein that 
associates with both inflammation and cancer growth. Wang 
et al. used the DNA MUC1 aptamers as a protective agent 
and targeted molecule to synthesize ultrasmall fluorescent 
AuNCs (1.5 ± 0.3 nm) [200], which effectively targeted over-
expressed mucin on 4T1 tumor cells.

4.3  Tumor Acidic Microenvironment Targeting

Different from the normal tissues, solid tumors exhibit 
unique microenvironments including dense and leaky 
microvasculature as well acidic extracellular pH values (pHe 
6.5–7.2) [201–203]. Renal-clearable ultrasmall AuNPs with 
HDs smaller than 5.5 nm can permeate the dense and leaky 
tumor blood vessels with pore sizes of 300–1200 nm. Vari-
ous “charge-reversal” strategies based on the tumor acidic 
microenvironmental stimuli (pHe 6.5–7.2) were reported to 
increase the accumulation and cellular uptake of nanoparti-
cles in tumor site [204, 205]. Zheng et al. investigated how 
the tumor vasculature and local acidity affect the targeting 
and retention of ultrasmall AuNPs (~ 2 nm) [206]. Both 
GS–AuNPs without acidity targeting and GC-AuNPs with 
pH-dependent cellular membrane adsorptions were synthe-
sized and further investigated their targeting efficiencies 
with two prostate cancer models: PC-3 tumors (pH 6.9, high 
microvascular densities) and LNCaP tumors (pH 6.5, low 
microvascular densities). After 24 h p.i., the accumulation 
of GC-AuNPs in LNCaP tumors (9.5 ± 2.2% ID  g−1) was 
twice as high as that in PC-3 tumors (4.4 ± 0.65% ID  g−1). 
However, the acidity effect on the tumor accumulation of 
GC-AuNPs was also demonstrated to be not involved in the 
initial tumor targeting (e.g., 1 h p.i.) and the very late reten-
tion stage (e.g., 72 h p.i.) of GC-AuNPs. The acidic tumor 
microenvironment temporarily enhanced the accumulation 
of ultrasmall GC-AuNPs in the acidic LNCaP tumors. In 
our group, by taking the advantages of controllable both 
pH-responsive imidazole ring functionalization and PEGyla-
tion, we developed a facile strategy to control the tumor-
acidity activated charge-reversal behaviors and HDs of 
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ultrasmall luminescent AuNPs (~ 1.7 nm) to achieve highly 
tumor-targeting specificity (Fig. 9d) [159]. Those ultras-
mall AuNPs showed well–controlled HDs (2.4–4.2 nm) and 
ζ-potential values (− 31.2 to − 11.4 mV at pH 7.4), which 
were then investigated their tumor-targeting behaviors at 
both in vitro and in vivo levels. Under pH 7.4 in normal tis-
sues, the AuNPs showed a highly negative charge (− 31.2 to 
− 11.4 mV), while in the acidic tumor microenvironment, the 
AuNPs transformed to positive charge (+ 1.4 to + 18.7 mV at 
pH 6.5). We discovered that the ultrasmall charge–reversal 
AuNPs with high ζ-potential values (− 11.4 mV at pH 7.4) 
and large HD (4.2 nm) contributed to the high tumor target-
ing efficiency (~ 9% ID  g−1) with low nonspecific accumu-
lation in MPS organs (e.g., liver ~ 2% ID  g−1). It was also 
demonstrated that the optimized ultrasmall charge-reversal 
AuNPs (HD: 4.2 nm; ζ-potential: − 11.4 mV at pH 7.4) 
could rapidly (< 10 min) and selectively recognize small 
metastatic tumors (~ 1 mm) in liver and lung with high sig-
nal–to–noise ratios of 4.6 and 4.5, respectively.

5  Imaging Performance

With the sharp size shrinking, the quantum confinement 
effect of the ultrasmall AuNPs leads to splitting electron 
energy levels, resulting in tunable fluorescent emissions 
with wavelengths from visible region to the NIR-II region 
(1000–1700 nm). The excellent intrinsic emissions and 
outstanding biological behaviors (e.g., renal clearance, low 
nonspecific accumulation and EPR effect) of the ultrasmall 
AuNPs show great potentials as unique optical probes to 
address many challenges in the healthcare field using flu-
orescence imaging. Strong multiple absorption bands in 
the visible to NIR region are observed from the ultrasmall 
AuNPs due to the single-electron transition [8, 207, 208], 
which enables the AuNPs with photoacoustic imaging capa-
bility. The ultrasmall AuNPs with high atomic number of 
Au (Z = 79) show excellent absorbers of X-rays and can 
offer excellent improvements in CT imaging [209, 210]. 
Furthermore, the surface of ultrasmall AuNPs can be func-
tionalized to couple with other contrast agents (e.g.,  Gd3+, 
perfluorocarbon, 198Au and 64Cu) to generate multimodal 
imaging capabilities such as magnetic resonance imaging 
(MRI) [211], single-photon emission computed tomography 
(SPECT) [212] and positron emission tomography (PET) 
[213, 214].

5.1  Fluorescence Imaging

Fluorescence imaging in the NIR-II region shows great 
potentials in intravital biomedical imaging and analysis, 
which significantly overcomes the challenges of strong tis-
sue absorption, auto-fluorescence and photon scattering to 
show deep tissue penetration (up to ~ 3 mm depth), micron-
level spatial resolution, and high signal-to-background ratio 
[215–217]. With the emission redshifts to the NIR-II region 
from the visible region, the non–radiative transitions from 
the AuNPs become fast [218–220], resulting in low emission 
quantum yields (QYs) in the NIR-II region. It is a challenge 
to achieve water-soluble AuNPs with both high QYs and 
emission peaks > 1100 nm for biomedical observations. In 
our group, using the alterable siloxane bridge cross-linking 
states, we developed a facile strategy to fabricate water-sol-
uble nanoassemblies of NIR-II AuNPs (1.2 nm) co-coated 
with both an organic silane and a hydrophilic thiolate poly-
ethylene glycol [221], which showed significant disassem-
bly-induced emission enhancement (DIEE) properties. The 
formed AuNP nanoassemblies with dominant interparticle 
crosslinking exhibited a maximum emission at 1070 nm with 
QYs of 1.8%. After disassembly, the AuNP nanoassemblies 
with increased intraparticle cross-linking showed a unique 
DIEE with the emission increased more than 6 folds to reach 
the QYs as high as 12%, which provided a facile pathway 
for designing highly-emissive AuNP nanoassemblies toward 
bioimaging (Fig. 10a). Furthermore, using an ABC template 
with controllable hydrophobic interactions in terms of uni-
mers and micelles, we reported a facile strategy for red-shift-
ing the emission and enhancing the biological interactions 
of luminescent AuNPs [222]. The highly red-shifted AuNPs 
with emission peak at 1,280 nm were generated with ABC 
unimers attached on the surface through strong intraparticle 
hydrophobic interactions for colitis imaging (Fig. 10b).

Recently, various ultrasmall AuNPs with emissions in 
the NIR-II region have been developed and their imaging 
performance have been investigated. Cheng et al. reported a 
 Au25(SG)18 with an emission maximum at 1050 nm [223]. 
The synthesized  Au25(SG)18 showed high capability binding 
to hydroxyapatite and accumulated in bone tissues. The in vivo 
NIR-II fluorescence imaging demonstrated that  Au25(SG)18 
showed a signal-background ratio (SBR) as high as 4.35 at 
24 h p.i. in the identification of spine from the surrounding 
soft tissue. Zhang et al. reported an  Au25NCs (1.8 nm) with 
emission center of 1120 nm [224]. The dynamic NIR–II 
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fluorescence imaging was then used to analyze blood perfusion 
of arterial vessel in brain. The observed blood perfusion rate in 
the injured left brain (0.11  s−1) was two times lower than the 
normal right brain (0.24 s −1). Yang et al. synthesized a cyclo-
dextrin (CD) -protected AuNCs (CD-AuNCs, ~ 1.85 nm) with 
NIR-II emission at ~ 1050 nm for protein/antibody labeling 
through host-guest chemistry [65]. The CD-AuNCs-labelled 
anti-CD326 antibody (Ab@Au NCs) exhibited a threefold 
increase in NIR-II signal intensity as compared to the CD-
AuNCs without labelling (Fig. 10c). Jiang et al. reported a 
series of ligand-/multiligand-capped AuNCs (1.2 nm) with 
emissions at 1000–1100 nm [225]. These AuNCs were then 
utilized for fluorescence imaging of lymph-node (LN) cancer 
metastasis, and the AuNCs with optimized surface chemistry 
showed a SBR of approximately 60 in the LN region with a 
long imaging window (> 3 h) (Fig. 10d). Xiao et al. developed 
a AuNCs (1.6 nm) with emission at 1050 nm for pH moni-
toring in stomach [226]. Methylene blue was loaded on the 

surface of polydopamine-encapsulated AuNCs to quench the 
emission of AuNCs through photo-induced electron transfer. 
Under the stimulation of gastric acid, the protonation of the 
cationic polymer caused the detachment of methylene blue 
to recover the emission of AuNCs for gastric acid imaging. 
Dai et al. synthesized a GS-AuNCs (~ 1.6 nm) with maximum 
emission at 1090 nm [227]. After phosphorylcholine function-
alization, the AuNCs showed minimal binding to serum pro-
teins and efficient renal clearance (93% ID, 24 h p.i.), which 
were then used for imaging the draining LNs in 4T1 mouse 
breast cancer and CT26 mouse colon cancer, respectively. 
The NIR-II imaging showed a SBR as high as 22 when the 
1300 nm long–pass emission filter was used.

5.2  CT Imaging

Ultrasmall AuNPs with high atomic numbers (Z = 79) with 
strong absorption of X–rays can serve as CT contrast agents to 

Fig. 10  NIR–II fluorescence imaging of the ultrasmall AuNPs. a Highly controllable nanoassemblies of luminescent AuNPs with abnormal 
DIEE for in vivo imaging applications [221]. Copyright (2022), John Wiley and Sons. b Luminescent AuNPs with controllable hydrophobic 
interactions for colitis imaging [222]. Copyright (2022), American Chemical Society. c NIR–II AuNCs–based protein biolabels for in  vivo 
tumor–targeted imaging [65]. Copyright (2020), John Wiley and Sons. d Multifunctional AuNCs for targeting, NIR–II imaging, and treatment of 
cancer lymphatic metastasis [225]. Copyright (2022), American Chemical Society
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image internal organs such as kidneys, where the larger ones 
cannot reach. Gao et al. reported an albumin-stabilized AuNCs 
(1.4 nm), which exhibited red emission at 645 nm and stable 
X-ray attenuation [68]. The synthesized AuNCs showed the 
slope of HU (Hounsfield Units) values (17.85), which was 4.3 
times higher than that of the clinical CT contrast agent iopro-
mide (4.15) (Fig. 11a). Zheng et.al reported that the GS-AuNPs 
(2 nm) could be used for real-time accumulation observation 
in the bladder area using CT imaging [155]. The CT intensity 
of GS–AuNPs at a concentration of 9 mg  mL−1 exhibited a 
high slope of HU values (845 HU). Basilion et al. used pros-
tate specific membrane antigen targeting ligand (PSMA-1) as 
surface ligand to synthesize ultrasmall  Au25 for prostate cancer 
targeting CT imaging and radiotherapy enhancement [157]. By 
the advantage of targeting type II membrane proteins highly 
expressed in most prostate cancers, the CT value of the PC3pip 
tumor (PSMA-positive) was 374 HU, twice as high as that of 
the PC3flu tumor (PSMA-negative) site (195 HU, at 4 h p.i.).

5.3  Multimodal Imaging

The ultrasmall AuNPs with strong absorption in the vis-
ible and NIR region can serve as contrast agents for photoa-
coustic imaging [229]. Using the strong NIR absorption of 
 Au25(SG)18, Zheng et.al reported that  Au25(SG)18 could be 
used for photoacoustic imaging in the visualization of the 
in situ transportation from the aorta to the renal parenchyma 
with a temporal resolution of 1 s [228]. This high temporal 
and spatial resolution photoacoustic imaging were then used 
for precise quantification of glomerular filtration rate in the 
normal (0.26 ± 0.02 mL  min−1  mL−1) and diseased kidneys 
(0.57 ± 0.04 mL  min−1  mL−1). In addition, the facile func-
tionalization of ultrasmall AuNPs allows the construction 
of multi-modal imaging probes, which integrates the advan-
tages of different imaging techniques to obtain important 
information from complicated organisms (Fig. 11b). Zheng 
et al. reported a one–step synthesis of 810 nm-emitting 
radioactive AuNPs incorporated with a 198Au radioisotope 
(GS–[198Au]AuNPs, 2.6 nm) [156], which were then used 
for both SPECT imaging and fluorescence imaging of the 
pharmacokinetics. The GS–[198Au]AuNPs were renal clear-
able and exhibited molecular pharmacokinetics with a rapid 
t1/2α of 5.0 min and a t1/2β of 12.7 h. Wang et al. developed 
a 810  nm-emitting AuNCs encapsulated with a fluori-
nated polymer (AuNCs@PF) [230], which were capable of 

fluorescence imaging, fluorine MRI and CT imaging. Jin 
et al. constructed pH-responsive Raman-active renal-clear-
able metallic superclusters (> 50 nm) from the assembly of 
AuNCs (2–3 nm) [67]. The glutathione diethyl ester-capped 
AuNCs was synthesized and loaded with a NIR-resonant 
Raman dyes (BS2G) to create the pH-responsive super-
clusters capable of in vivo Raman imaging in acidic tumor 
environments. The average pixel intensity in the 4T1 tumor 
(0.4 ± 0.2) was 2.2 times higher than that of the normal tis-
sue (0.2 ± 0.04) (Fig. 11c). Yuan et al. designed NIR–II 
luminescent  Au44NCs (1.6 nm) with emissions at both 1080 
and 1280 nm by conjugating an aromatic photoacoustic/pho-
tothermal molecules (Cy7) through a click chemistry [66], 
which were then used for both NIR–II fluorescent and pho-
toacoustic imaging–guided photothermal therapy (Fig. 11d).

6  Conclusion and Perspective

The fundamental understanding on the nano–bio inter-
actions of ultrasmall AuNPs is an important issue in the 
development of translatable intelligent nanomedicine with 
both maximum efficacy and minimum toxicity toward dis-
ease theranostics. In this review, we briefly summarize 
the recent advances of biological interactions and imag-
ing of ultrasmall AuNPs at both in vitro and in vivo lev-
els including the cellular interactions, organ interactions, 
tumor interactions and imaging performance. The funda-
mental physicochemical properties of ultrasmall AuNPs, 
such as surface charge, surface coverage, hydrophobicity, 
functionality and concentration, play important roles in 
governing their nano–bio interactions with cells, organs 
and tumors. By taking the advantages of unique quantum 
confinement effect, high atomic number of Au and easy 
functionality, the ultrasmall AuNPs with the excellent 
intrinsic emissions and outstanding biological behaviors 
show great potentials as promising multimodal probes 
to address many challenges in the healthcare field using 
the imaging techniques such as fluorescence imaging, CT 
imaging, photoacoustic imaging, MRI imaging, PET imag-
ing and Raman imaging.

With the above advances, the future biomedical appli-
cations of ultrasmall AuNPs hold great promise. However, 
the research on the nano–bio interactions of ultrasmall 
AuNPs is still in their early stage. An in-depth understand-
ing of the nano–bio interactions of ultrasmall AuNPs highly 
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relies on the development of synthetic strategies towards 
water-soluble different-sized atomically precise AuNCs to 
overcome the long-standing size heterogeneity issue of the 
nanoparticles, so that the precisely understanding of size-
dependent nano–bio interactions of ultrasmall AuNPs will 
be achieved. In addition, the understanding on whether and 
how ultrasmall AuNPs cross the biological barriers such as 
blood brain barrier (BBB) [231, 232], the small intestine 

and peripheral nerves [233], should be further investigated, 
which will facilitate a better understanding of their in vivo 
toxicity and also have a significant clinical impact. Further-
more, in order to achieve more accurate and multidimen-
sional dynamic information of the nano–bio interactions, 
researchers are highly suggested to pay more attention to 
the theoretical simulation investigations of the ultrasmall 
AuNPs in the biological systems. In summary, nano–bio 

Fig. 11  Multifunctional imaging of ultrasmall AuNPs. a The AuNCs used for in vivo 2D and 3D CT of murine kidneys [68]. Copyright (2015), 
American Chemical Society. b Photoacoustic imaging of AuNPs transport in the kidneys [228]. Copyright (2019), John Wiley and Sons. c Gold 
supraclusters for in vivo Raman imaging of tumors [67]. Copyright (2023), American Chemical Society. d In vivo NIR-II fluorescence imaging 
and photoacoustic imaging of  Au44NCs [66].Copyright (2023), Royal Society of Chemistry
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interaction dictates the overall biological applications of the 
ultrasmall AuNPs. A systematic understanding the compli-
cate nano–bio interactions thus provide useful insights into 
the nanotoxicity, in vivo transport, targeting, excretion and 
other key properties (e.g., inflammation and immunity) of 
these novel ultrasmall nanoparticles to facilitate the future 
clinical translation.
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