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Efficient Electromagnetic Wave Absorption 
and Thermal Infrared Stealth in PVTMS@MWCNT 
Nano‑Aerogel via Abundant Nano‑Sized Cavities 
and Attenuation Interfaces

Haoyu Ma1,2,3, Maryam Fashandi2, Zeineb Ben Rejeb2, Xin Ming4, Yingjun Liu4, 
Pengjian Gong1 *, Guangxian Li1, Chul B. Park1,2 *

HIGHLIGHTS

• PVTMS@MWCNT nano-aerogel with nano-pore size and abundant heterogeneous interface was fabricated via radical polymeriza-
tion, sol–gel transition and  CO2 drying.

• The nano-aerogel shows superior electromagnetic wave absorption property  (RLmin = −36.1 dB and cover all Ku-band) and thermal 
infrared stealth property (ΔT reached 60.7 °C).

• Layered nano-aerogel/graphene film with high EMI shielding and absorption properties was obtained;

ABSTRACT Pre-polymerized vinyl trimethoxy silane (PVTMS)@
MWCNT nano-aerogel system was constructed via radical polymeriza-
tion, sol–gel transition and supercritical  CO2 drying. The fabricated 
organic–inorganic hybrid PVTMS@MWCNT aerogel structure shows 
nano-pore size (30–40 nm), high specific surface area (559  m2  g−1), 
high void fraction (91.7%) and enhanced mechanical property: (1) the 
nano-pore size is beneficial for efficiently blocking thermal conduction 
and thermal convection via Knudsen effect (beneficial for infrared (IR) 
stealth); (2) the heterogeneous interface was beneficial for IR reflection 
(beneficial for IR stealth) and MWCNT polarization loss (beneficial 
for electromagnetic wave (EMW) attenuation); (3) the high void frac-
tion was beneficial for enhancing thermal insulation (beneficial for IR 
stealth) and EMW impedance match (beneficial for EMW attenuation). Guided by the above theoretical design strategy, PVTMS@MWCNT 
nano-aerogel shows superior EMW absorption property (cover all Ku-band) and thermal IR stealth property (ΔT reached 60.7 °C). Followed 
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by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity, an extremely high electromagnetic 
interference shielding material (66.5 dB, 2.06 mm thickness) with superior absorption performance of an average absorption-to-reflection 
(A/R) coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz (A/R ratio more than 10) was experimentally obtained in this work.

KEYWORDS Nano-pore size; Heterogeneous interface; Electromagnetic wave absorption; Thermal infrared stealth; Nano-aerogel

1 Introduction

New generation materials with both superior electromag-
netic wave (EMW) absorption property and infrared (IR) 
stealth property have received widespread attention due to 
their important application potentials, especially in the field 
of human health protection, precision instrument protection 
and modern military [1–3]. For example, in modern military 
area, materials with both IR stealth and EMW absorption 
property were beneficial for developing IR and EMW dou-
ble stealth device. However, microwave absorbers need low 
reflectivity and high absorptivity, while IR stealth materials 
require high reflectivity and low IR absorptivity [3]. Thus, 
it seems to be challenging to integrate IR and EMW stealth 
in one material owing to the thoroughly opposite principles. 
Therefore, lots of effort have been made to prepare materials 
with both EMW absorption and IR stealth properties.

For EMW absorption materials, interfacial polarization 
loss [4, 5], conduction loss [6, 7] and multi-reflection loss 
[8] have been proven to be efficient methods to absorb the 
incident EMW. For example, Zhou et al. [9] fabricated multi-
heterogeneous interface structure in CoNi/C aerogel, due to 
the enhanced interfacial polarization loss and the imped-
ance match, hence achieved a minimum reflection loss 
value of –60.7 dB. Ma et al. [6] utilized conduction loss and 
polarization loss of graphene nanoribbon (GNR) structure 
in the cell wall of GNR/poly(vinylidene fluoride) nanocom-
posites foam, hence achieved high EMW absorption prop-
erty (−54.1 dB). Xu et al. [8] fabricated reduced graphene 
oxide@ferroferric oxide  (Fe3O4)/carbon nanotube/tetranee-
dle-like ZnO whisker@silver/waterborne polyurethane com-
posite foams with aligned porous structures, hence achieved 
broadband microwave absorption performance (in the fre-
quency range of 8.2–18.0 GHz) due to the multi-reflection 
of EMW and the progressive conductive structure design. 
However, it should be noted that the absorbed EMW energy 
via polarization loss, conduction loss and multi-reflection 
loss will be transformed into joule heat [10]. And if EMW 

energies are transformed into heat, the target surface tem-
perature will increase and can be easily detected by IR detec-
tors, hence deteriorating the IR stealth property [11].

Porous structure is beneficial for preparing superior IR 
stealth materials; because the high void fraction leads to 
decreased thermal conductivity and air/solid interface struc-
ture enhances IR reflection. Gu et al. [3] coated poly(3, 4-ethy
lenedioxythiophene):polystyrene sulfonate on melamine foam 
surface (with micrometer pore size) to create heterogeneous 
interface in porous structure, hence prepared materials with 
desired IR stealth property (ΔT reached to 35.9 °C). Wu et al. 
[12] used freeze-drying method to prepare porous reduced 
graphene oxide/Fe3O4 materials (with micrometer pore size) 
and the IR stealth property (ΔT) reached 34.8 °C. Therefore, 
porous materials (containing air phase) show great potential for 
preparing high-performance IR stealth materials. However, it 
should be also noted that solid skeleton in micrometer porous 
materials could be an idealized thermal conduction pathway, 
which will deteriorate the IR stealth property of materials [13].

Nano-aerogel materials (with nano-sized air distribution) 
could be used for more effectively blocking thermal con-
duction and IR signal due to the unique structure includ-
ing nano-pore size, high specific surface area and high void 
fraction [14, 15]. For IR stealth materials, nano-pore size 
of aerogel materials will induce Knudsen effect and greatly 
restrict the free movement of air molecules, hence greatly 
decreasing the thermal conduction (even lower than air) and 
thermal convection of nano-aerogel materials [16, 17]; high 
specific interface area will be beneficial for enhancing the IR 
wave reflection and improving IR stealth property of mate-
rials according to the Stefan–Boltzmann theory [18]; High 
void fraction will be beneficial for decreasing the thermal 
conduction of materials and improving the EMW impedance 
match, hence beneficial for enhancing the IR stealth property 
and EMW absorption property, simultaneously.

In this work, pre-polymerized vinyl trimethoxy silane 
(PVTMS) with high cross-linking density was synthe-
sized using the radical polymerization method, and then 
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the spinodal decomposition method was used to pre-
pare PVTMS@MWCNT/ethanol wet-gel. Then, super-
critical  CO2  (scCO2) drying method was used to prepare 
PVTMS@MWCNT nano-aerogel with high void fraction, 
high specific surface area and nano-pore size. It is found 
that the high void fraction was beneficial to enhance the 
EMW impedance match and the tailored MWCNT hetero-
geneous interface was beneficial to enhance EMW polari-
zation loss (electron transporting) and electron tunneling 
loss of PVTMS@MWCNT nano-aerogel. Therefore, all-
frequency absorption in Ku-band (12.4–18 GHz) could be 
achieved with an optimized MWCNT nanofiller structure. 
The EMW absorption property of obtained PVTMS@
MWCNT nano-aerogel even reached −36.1 dB. Mean-
while, the high specific surface area was beneficial for 
enhancing the IR reflection and nano-pore size was benefi-
cial for decreasing the thermal conductivity of PVTMS@
MWCNT nano-aerogel, hence greatly enhancing the IR 
stealth property (ΔT reached 60.7 °C). Then, by simply 
combining this EMW absorption aerogel layer (PVTMS@
MWCNT nano-aerogel) with an ultra-thin graphene film 
layer, a high EMI shielding material with excellent EMW 
absorption property (an average A/R ratio of 25.4 and 
EMW absorption bandwidth (EBW) of 4.1 GHz) was suc-
cessfully fabricated in this work. Therefore, from both 
experimental and theoretical viewpoints, this work pro-
vides a guideline for nano-scale structural designation of 
porous materials in the application of EMW absorbing, 
EMI shielding and IR stealth.

2  Experimental

2.1  Materials

Di-tert-butyl peroxide (DTBP, 98%, thermal initiator) and 
vinyl trimethoxy silane (VTMS, 98%, silica precursor) were 
purchased from Sigma-Aldrich. Anhydrous ethanol (100%, 
solvent) and ammonium hydroxide solution (28–30%, ACS 
Grade, base catalyst) were purchased from GreenField 
Global and VWR, respectively. All the chemicals were 
used as received. Multi-walled carbon nanotubes (MWC-
NTs, diameter: 9.5 nm; length: 1.5 μm) were purchased 
from Nanocyl SA, Belgium (NC7000™). Carbon dioxide 
(purity ≥ 99%, Linde Gas) was used for  scCO2 drying.

2.2  Sample Preparation

2.2.1  Polymeric Precursor Synthesis

PVTMS was prepared by the method discussed in our 
previous studies [19, 20]. First, 6 g of DTBP was dis-
solved in 60 g of VTMS and poured into a three-neck 
flask equipped with a condenser and stirrer. The reac-
tion was initiated under a nitrogen atmosphere at 150 °C 
with a stirring speed of 200 rpm. After 3 h, the flask was 
placed in a vacuum oven at a temperature of 150 °C to 
remove the unreacted monomer and initiator.

2.2.2  Sol–Gel Synthesis of Hybrid Aerogels

As shown in Fig.  1a, 4  g  PVTMS was dissolved in 
20 mL ethanol and the solution was then stirred at 40 °C 
for 0.5 h. A certain amount of nanofiller was added to 
20 mL ethanol solution followed by sonication for 0.5 h 
in a bath sonicator. The above two batches of ethanol 
solutions were then mixed and followed by a continu-
ous stirring for another 0.5 h. After mixing, the base 
catalyst with water/Si molar ratio of 8 was added to 
the mixture for inducing spinodal decomposition. The 
mixture was further stirred for 1 more minute followed 
by transferring to the molds. The molds were kept in 
an oven at 40 °C for up to 12 h until gelation was com-
pleted. The wet gels were aged in ethanol for 24 h and, 
finally, went through solvent exchange with liquid  CO2 
at a pressure of 10.34 MPa (1500 psi), and dried with 
 scCO2 at 45 °C.

2.2.3  Double‑Layered PVTMS@MWCNT/Graphene 
Samples

Graphene films with superior electrical conductivity and 
EMW reflection property was prepared via solvent casting 
and thermal reduction [21–23], and the total thickness is 
around 0.03 mm. Then, PVTMS@MWCNT nanocompos-
ite aerogel was combined with reflection layer (graphene 
film) using glue to prepare double layer aerogel/graphene 
EMI shielding materials.
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2.3  Characterization

Transmission electron microscope (TEM, Talos F200i) 
was used to study the microstructure of the aerogels. 
X-ray photoelectron spectroscope (XPS, Thermo Scien-
tific K-Alpha) was used to study the element content of 
pristine PVTMS, PVTMS@MWCNT aerogel. The total 
thermal conductivity of the aerogel samples was meas-
ured using a Hot Disk TPS2500S thermal constants 
analyzer. Pore size distribution and the surface area of 

PVTMS@MWCNT aerogel were also measured by the 
Brunauer–Emmett–Teller (BET) test using an Autosorb 
IQ (Quantachrome Instruments). Infrared thermal imag-
ing photos with the information of different sample’ 
(thickness: 5.6  mm) surface temperature and infrared 
stealth property were taken by an infrared imaging device 
(Fluke-Ti32S).

PNA-X network analyzer (Keysight N5232B) was 
used to evaluate EMW absorption property (single 
layer) and EMI shielding property of samples [24, 25]. 

Fig. 1  a Schematic illustration of PVTMS polymerization and sol–gel synthesis of PVTMS@MWCNT/ethanol wet gel; b  scCO2 drying method 
to prepare PVTMS@MWCNT aerogel with MWCNT structure for EMW absorption (Part 1), mutilayer of PVTMS molecular structure (Part 2), 
nano structure for infrared stealth (Part 3)
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According to waveguide method, real and imaginary parts 
of permittivity (ε′ and ε″) and permeability (μ′ and μ″) of 
PVTMS@MWCNT aerogel in Ku-band frequency range 
(12.4–18 GHz) were tested. EMW absorption performance 
(Reflection Loss, RL) and impedance match (Zin/Z0) can be 
calculated by the measured complex permittivity and perme-
ability using the following equations [26, 27]:

where Zin is the input impedance of the material (Ω) and Z0 
refers to the impedance of free space (normally 377 Ω). μr 
and εr refer to the complex permeability and permittivity 
of the material, respectively. f and d represent the applied 
EMW frequency (Hz) and the thickness (m) of the material. 
c is the speed of light (m/s).

To determine the EMW attenuation capability of the 
material, the attenuation constant α can be evaluated by the 
equation:

The scattering parameters,  S11 and  S21, were used to calcu-
late the total SE  (SET), reflection SE  (SER), and absorption 
SE  (SEA). R, T and A coefficients were also calculated from 
the scattering parameters, S11 and S21 [28, 29].

3  Results and Discussion

3.1  PVTMS@MWCNT Aerogel Preparation 
and the Corresponding Structure Characterization

As Fig. 1a shown, PVTMS polymer chain with high inor-
ganic cross-linking density was prepared using radical 
polymerization method. The high cross-linking density 
was beneficial for fabricating aerogel with nano-pore size 
and high surface area, and the hybrid organic–inorganic 
molecular structure was beneficial for enhancing mechanical 
property of nano-aerogel materials [30, 31]. Then, spinodal 
decomposition method was used to prepare PVTMS@
MWCNT wet gel (Fig. 1a), through this method, sol–gel 
transition speed could be greatly enhanced [32, 33]. Finally, 
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in order to achieve nano-pore structure and high specific 
surface area,  scCO2 drying method was used to prepare 
PVTMS@MWCNT nano-aerogel (Fig. 1b) [19]. The fabri-
cated PVTMS@MWCNT nano-aerogel with abundant het-
erogeneous interface (Part 1), multilayer of PVTMS molecu-
lar structure (Part 2) and nano-pore size structure (Part 3) 
was beneficial for enhancing EMW absorption property, 
mechanical property and IR stealth property.

Figure 2a, b shows TEM micrographs of pristine PVTMS 
nano-aerogel and PVTMS@MWCNT nano-aerogel, and 
they all show nano-pore size structure. Figure 2c shows 
digital micrograph of PVTMS@MWCNT aerogel with vari-
ous nanofiller content, it is noted that the degree of aerogel 
shrinkage decreased with increasing MWCNT content after 
 scCO2 drying (Fig. S3). For aerogel with nano-pore size, 
the capillary force in solvent exchange process is the main 
reason for aerogel shrinkage. As Fig. 1 (Part 2) and Fig. 
S2 show, PVTMS molecular chains could be absorbed on 
MWCNTs’ surface due to hydrogen bonding effect and Van 
der Waals forces adsorption effect [34–36]. Then, the high-
density PVTMS aerogel layer could be generated around 
MWCNT during sol–gel transition process, and the high-
density layer around MWCNT network will be beneficial 
for enhancing the solid skeleton strength and decreasing the 
shrinkage ratio during  scCO2 drying process.

Figure 2d shows thermal conductivity and void fraction 
of PVTMS@MWCNT nano-aerogel with various MWCNT 
contents. The void fraction slightly increased from 90.9 to 
92% with increasing MWCNT content, and the thermal 
conductivity also increased from 25.3 to 42.4 mW  m−1  K−1 
with increasing MWCNT content. The increased void frac-
tion could be ascribed to the decreased shrinkage ratio due 
to the enhanced solid skeleton strength around MWCNTs; 
the increased thermal conductivity could be ascribed to the 
high thermal conductivity of MWCNTs. However, due to 
the high void fraction (large amount of air) and nano-pore 
size (Knudsen effect), PVTMS@MWCNT nano-aerogel still 
shows low thermal conductivity. Figure 2e presents that the 
low thermal conductivity PVTMS@MWCNT nano-aerogel 
could be used to effectively block the heat transfer and hence 
suppress the water evaporation process of the flower on the 
nano-aerogel upper surface. Figure 2f shows the compres-
sive mechanical property of PVTMS@MWCNT nano-
aerogel with various MWCNT content, and the mechani-
cal property increased by adding MWCNTs to form solid 
absorption layer (Fig. 1(Part 2)). Figure 2g, h shows overall 
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XPS spectral and C 1s XPS spectral of pristine PVTMS 
aerogel and PVTMS@MWCNT aerogel. It is noted that the 
C 1s characteristic peak at 284.8 eV greatly increased, which 
can be ascribed to the added MWCNTs (C=C or C–C). The 
increased carbon nanofiller is then beneficial for the con-
struction of EMW absorption structure to effectively absorb 
the incident EMW.

3.2  EMW Absorption Property of PVTMS@MWCNT 
Aerogel

Figure 3a, b shows electromagnetic parameters (permit-
tivity) of PVTMS@MWCNT nano-aerogel with various 
nanofiller content. The average electromagnetic param-
eters are presented in Fig. 3c, it is noted that the real part 
(ε′) and imaginary part (ε″) of dielectric permittivity all 

Fig. 2  TEM micrographs of a pristine PVTMS aerogel and b PVTMS@MWCNT aerogel; c Digital micrograph of PVTMS@MWCNT aerogel 
with various nanofiller content; d Thermal conductivity and void fraction of PVTMS@MWCNT aerogel with various nanofiller content; e Ther-
mal blocking property of PVTMS@MWCNT aerogel; f Compressive modulus of PVTMS@MWCNT aerogel with various nanofiller content; 
XPS spectral of pristine PVTMS aerogel and PVTMS@MWCNT aerogel at g 0–1400 eV and h 281–291 eV
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increased with increasing nanofiller content. The increased 
dielectric permittivity could be ascribed to the increased 
MWCNT content, and the increased dielectric loss could 
be ascribed to the increased conduction loss in nanocom-
posites with increasing MWCNT content [37, 38]. Fig-
ure 3d shows the attenuation constant (α) of PVTMS@
MWCNT nano-aerogel with various nanofiller contents. 
The attenuation constant increases with increasing nano-
filler content, which is ascribed to the conduction loss of 
MWCNTs.

Figure 3e–h and e’–h’ shows the EMW absorption prop-
erty of PVTMS@MWCNT nano-aerogel with various 

MWCNT contents in both 3D and 2D. It is noted that the 
EMW absorption property of PVTMS@MWCNT nano-
aerogel increased first and then decreased with increasing 
nanofiller content. Figure 3e”–h” shows the impedance 
match of PVTMS@MWCNT nano-aerogel at various thick-
ness. It is noted that impedance match (Zin/Z0) of aerogel 
material gradually decreases with increasing MWCNT con-
tent. As Fig. 3f’’ shows, the impedance match of PVTMS@
MWCNT nano-aerogel reached to 1, which means the 
lower reflection ratio of EMW at air/material interface. 
And the decreased reflection ratio will be beneficial for 
EMW absorption [39]. Hence, as Fig. 3f, f’ shown, the best 

Fig. 3  a Real part and b imaginary part of dielectric property of PVTMS@MWCNT nano-aerogel with various MWCNT contents; c Average 
real part and imaginary part of dielectric property of PVTMS@MWCNT aerogel in Ku-band; d Calculated attenuation constant of PVTMS@
MWCNT aerogel with various nanofiller content; e–h 3D EMW absorption curves, e’–h’ 2D EMW absorption curves and e’’–h’’impedance 
match (Zin/Z0) of PVTMS@MWCNT aerogel with various MWCNT contents
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EMW absorption property (all-Ku band,  RLmin = –36.1 dB, 
2 mm in thickness) was achieved by tailoring the MWCNT 
structure in PVTMS nano-aerogel system. As Figs. S7 and 
S8 show, the superior EMW absorption property could be 

ascribed to heterogeneous interface polarization loss and 
tunnelling loss.

Meanwhile, it is also noted that optimal EMW absorp-
tion thickness gradually decreases with increasing 

Fig. 4  a Nitrogen adsorption–desorption isotherms and b pore diameter distribution curves of pristine PVTMS aerogel and PVTMS@MWCNT 
aerogel; c Variation tendency of the temperature detected on the upper surface of samples versus heating time at a fixed setting temperature; d 
digital micrograph of heat target uncovered and covered with PVTMS@MWCNT aerogel; e Infrared stealth mechanism of PVTMS@MWCNT 
aerogel; Thermal infrared images of PVTMS@MWCNT sample captured at intervals of 8 min from 0 to 16 min (f–i at setting T of 67.1 °C, f’–i’ 
at setting T of 82.4 °C and f’’–i’’ at setting T of 100.1 °C)
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MWCNT content, this could be ascribed to the following 
two reasons: (1) the optimal impedance thickness gradu-
ally decreases with increasing MWCNT content; (2) The 
optimal EMW absorption thickness (T) could be expressed 
as follows [40]:

where c is the speed of light, μr and εr refer to the complex 
permeability and permittivity of the material, respectively. f 
represents the applied EMW frequency. Therefore, the opti-
mal EMW absorption thickness gradually decreases with 
increasing dielectric property (Fig. 3a).
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3.3  IR Stealth Property of PVTMS@MWCNT Aerogel

Figure 4 shows nitrogen adsorption–desorption isotherms 
of pristine PVTMS aerogel and PVTMS@MWCNT aero-
gel. The pore shapes and types were investigated based on 
IUPAC’s technical report on the physisorption of gases [41]. 
It can be observed that all samples exhibit type IV isotherm, 
which is a characteristic of mesoporous materials [41]. The 
hysteresis loop is generated due to the capillary conden-
sation in mesopores with a diameter over 4 nm. Nitrogen 
adsorption–desorption analysis was also used to measure 
the specific surface area and pore size of the samples [20]. 
As Fig. 4a, b shows, PVTMS@MWCNT aerogel shows 

Fig. 5  a–d Schematic illustration of double-layered EMI shielding materials combining PVTMS@MWCNT nano-aerogel (top layer) and gra-
phene film layer (bottom layer); a’–d’ EMI shielding effectiveness (SE) of double-layered samples with various nano-aerogel layer thickness, 
and a’’–d’’ the corresponding reflection (R), transmission (T) and absorption values together a’’’–d’’’ with A/R ratio
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high specific surface area (559  m2  g−1) and nano pore size 
(30–40 nm).

In order to characterize the infrared stealth property of 
our PVTMS@MWCNT nano-aerogel, samples were placed 
on a heating platform at various temperatures (67.1, 82.4 
and 100.1 °C) and thermal infrared images were captured. 
Figure 4f–i” shows thermal infrared images of PVTMS@
MWCNT nano-aerogel captured at intervals of 8 min from 0 
to 16 min at various heat source temperature including 67.1, 
82.4 and 100.1 °C. The detailed upper surface temperature 
is presented in Fig. 4c, it is noted that the target signal was 
greatly decreased by covering PVTMS@MWCNT nano-
aerogel on the hot plate, and the ΔT reached to 60.7 °C.

For thermal IR steal materials, low IR emissivity and low 
thermal conductivity are key factors for enhancing IR stealth 
property. As Fig. S11 shows, it is noted that PVTMS@
MWCNT samples shows high infrared emissivity (0.95 
at 3–5 µm and 0.94 at 8–14 µm). The proposed reason for 
the high infrared emissivity could be ascribed to the added 
MWCNT, which could act as black body, hence, to absorb 
and emit IR signal [16]. Figures 4e and S12 shows the IR 
stealth mechanism of PVTMS@MWCNT nano-aerogel. 
Generally, heat transfer mechanism including thermal 
radiation, thermal conduction and thermal convection. For 
PVTMS@MWCNT nano-aerogel, the high specific surface 
area and high void fraction were beneficial for blocking 

Fig. 6  a Infrared stealth property [2, 3, 42–45] and b EMW absorption property [6, 7, 46–54] of PVTMS@MWCNT aerogel compared with 
references; c EMI shielding property of double-layered PVTMS@MWCNT aerogel/graphene film compared with references [8, 55–63]



Nano-Micro Lett.           (2024) 16:20  Page 11 of 14    20 

1 3

thermal radiation by reflectance and decreasing solid-phase 
thermal conduction, respectively; the nano-pore size was 
beneficial for blocking gas-phase thermal conduction and 
thermal convection via Knudsen effect. Hence, PVTMS@
MWCNT nano-aerogel shows superior IR stealth property.

3.4  Double‑Layered PVTMS@MWCNT/Graphene 
Film for EMI Shielding

PVTMS@MWCNT aerogel also shows great potential for 
preparing double-layered material with superior EMI shield-
ing property (absorption dominant). Hence, in this work, 
graphene film with high electrical conductivity and high 
EMW reflection property was used as the EMW reflection 
layer (bottom film layer) to construct a double-layered EMI 
shielding material with EMW absorption aerogel layer on 
top, as shown in Fig. 5. For pristine graphene film layer 
shown in Fig. 5d, d’, d’’ and d’’’, most incident EMW was 
reflected at the interface between air/graphene film (average 
R = 0.98) due to the film’s very high electrical conductivity. 
However, for those double-layered EMI shielding material, 
the reflection  (SER) greatly decreased and almost all of total 
EMI shielding  (SET) were from absorption  (SEA). As shown 
in Fig. 5b’’, b’’’, the double-layered absorption material 
of ~ 2 mm in thickness with a reflection film shows the best 
EMW absorption property for EMI shielding application. 
The maximum A/R ratio reached to 72.3 and the average A/R 
ratio in Ku band was 25.4. The efficient EMW absorption 
bandwidth (EBW, A/R > 10) was 4.1 GHz.

Figure 6 summaries a series of studies on IR stealth (a), 
EMW absorption (b) and EMI shielding (c), it is noted that 
the fabricated PVTMS@MWCNT nano-aerogel shows 
superior IR stealth property, EMW absorption property and 
EMI shielding property, simultaneously. The main reason 
for this superior property could be ascribed to the tailored 
nano-sized cavities and abundant heterogeneous interface 
fabricated in PVTMS@MWCNT nano-aerogel system.

4  Conclusion

In this work, MWCNT network structure with supe-
rior EMW absorption property was constructed in pre-
polymerized vinyl trimethoxy silane (PVTMS) nano-
aerogel system. Supercritical  CO2 drying technology and 
spinodal decomposition method were used to prepare 

organic–inorganic hybrid PVTMS aerogel structure with 
nano-pore size, high specific surface area, high void frac-
tion and enhanced mechanical property: (1) the nano pore 
size is beneficial for efficiently blocking thermal conduc-
tion and thermal convection; (2) the abundant heteroge-
neous interface was beneficial for IR refection and EMW 
absorption; (3) the high void fraction was beneficial for 
enhancing EMW impedance match of samples; Guided 
by the above theoretical design strategy, EMW absorbing 
PVTMS@MWCNT nano-aerogel with a -36.1 dB absorp-
tion performance cover all Ku-band (12.4–18 GHz) was 
successfully fabricated using the tailored structure design; 
and the PVTMS@MWCNT nano-aerogel shows superior 
IR stealth property (ΔT reached to 60.7 °C). Followed by 
a facial combination of the above nano-aerogel with gra-
phene film of high electrical conductivity, an extremely 
high EMI shielding material (66.5 dB, 2.06 mm thick-
ness) with superior absorption performance of an aver-
age absorption-to-reflection (A/R) ratio of 25.4 and a low 
refection bandwidth of 4.1 GHz (A/R ratio more than 10) 
was experimentally obtained in this work.
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