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HIGHLIGHTS 

• A dry transfer method for the mass production of transparent conductive carbon nanotube (CNT) films inspired by typography has 
been proposed.

• The strain sensors based on the CNT films have high stretchability and repeatability (gauge factor up to 9960 at 85% strain).

• These ultrathin strain sensors can detect human motion, sound, and pulse, suggesting promising application prospects in wearable 
devices.

ABSTRACT Flexible and wearable sensing devices have broad 
application prospects in bio-monitoring such as pulse measurement, 
motion detection and voice recognition. In recent years, many sig-
nificant improvements had been made to enhance the sensor’s perfor-
mance including sensitivity, flexibility and repeatability. However, it is 
still extremely complicated and difficult to prepare a patterned sensor 
directly on a flexible substrate. Herein, inspired by typography, a low-
cost, environmentally friendly stamping method for the mass production 
of transparent conductive carbon nanotube (CNT) film is proposed. In 
this dry transfer strategy, a porous CNT block was used as both the seal 
and the ink; and Ecoflex film was served as an object substrate. Well-
designed CNT patterns can be easily fabricated on the polymer substrate 
by engraving the target pattern on the CNT seal before the stamping 
process. Moreover, the CNT film can be directly used to fabricate ultrathin (300 μm) strain sensor. This strain sensor possesses high sen-
sitivity with a gauge factor (GF) up to 9960 at 85% strain, high stretchability (> 200%) and repeatability (> 5000 cycles). It has been used 
to measure pulse signals and detect joint motion, suggesting promising application prospects in flexible and wearable electronic devices.
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1 Introduction

Flexible electronic devices have a wide range of needs 
and attracted tremendous attention in wearable electronics, 
soft robots and implantable medical devices [1–5]. Among 
the various functions of flexible electronic devices, strain 
sensing is the most fundamental and indispensable one 
[6–9]. These applications require the strain sensor to be 
ultrathin, transparent, integrative and easy to fabricate. 
Besides, the strain sensor also needs to be flexible and 
conformable for electronic skins or wearable electronics 
[10–12]. Generally, the performance of the strain sensor 
including sensitivity, stability, and respond speed depends 
not only on the stretchable substrate but also on the con-
ductive network which transforms the strain from deforma-
tion into an electrical signal [13–15]. Despite some sen-
sors with remarkable performance have been fabricated by 
fancy structural design [16, 17], or special materials modi-
fied [18], high-efficiency, low-cost and environmentally 
friendly manufacturing strategy for embedding conductive 
materials into polymer substrate are still one of the tech-
nological difficulties in fabricating strain sensors [19–23].

Recently, some methods have been developed for con-
structing a conductive network on stretchable polymer 
substrate. For instance, conductive nanomaterials were 
first dispersed in organic solutions and deposited on a pol-
ymer substrate by spin-coating [24–26], dip-coating [27, 
28], or printing technology [21, 29–31]. Although many 
sensors fabricated by these technologies possess high sen-
sitivity and larger stretchability, the dispersion process of 
conductive nanomaterials will destroy their structure and 
lead to an enormous decrease in conductivity. In addition, 
most of the organic solutions can damage the structure of 
the polymer substrate, which will lower the stretchability 
of the devices. Therefore, dry transfer, which can reduce 
the structural failure of conductive materials, is a feasible 
strategy for strain sensor fabrication. Recently, some new 
dry transfer methods have been explored for the fabrication 
of wearable devices. For example, Qiao et al. [32] demon-
strated graphene epidermal artwork sensors based on laser 
scribed graphene. Gilshteyn et al. [33] developed a one-
step technique to transfer CNT films on to hydrogel sur-
face. Liao et al. [34] fabricated graphite-based strain sen-
sors by pencil drew on printing paper. However, the above 
fabricating technologies are low-efficiency, high-cost, and 

complicated. A high-efficiency, eco-friendly, and low-cost 
method for fabricating strain sensors with excellent per-
formance has not been explored, especially for the sensors 
with high sensitivity and stretchability.

Here, we proposed a simple, low-cost, environmentally 
friendly stamp contact printing method for the mass pro-
duction of transparent conductive carbon nanotube (CNT) 
film. Stamp, similar to typography technology, has been 
widely used in official documents for nearly 3000 years. 
During the stamping process, the seal with well-designed 
pattern adsorbs and transfers liquid ink onto the target sub-
strate. Afterward, the pattern will be printed on the sub-
strate. Herein, inspired by stamp, a versatile stamp contact 
printing technology to prepare transparent CNT film on 
polymer substrate was developed. In this stamping method, 
a porous CNT block was used as both the seal and the 
solid ink. After the stamping process, the surface layer of 
CNT will be separated from the seal and transferred onto 
the Ecoflex surface with the help of the van der Waals’ 
interaction. The patterns on the CNT seal engraved by 
the laser can be transferred onto the target substrate and 
form a patterned CNT film. Further, we can fabricate strain 
sensors merely by connecting electrodes on both ends of 
the as-prepared CNT film. The strain sensor based on this 
CNT film shows not only high sensitivity and stretchability 
(gauge factor (GF) of 9959.8, at strain 85%), but also high 
repeatability (> 5000 cycles). Besides, even after stretch-
ing, bending and twisting for 1000 cycles, the resistance 
of the strain sensors had a tiny change, which shows the 
excellent recoverability of the CNT percolation network. 
To excavate the potential application of our sensors, pulse 
detection, motion monitoring, and voice recognition are 
demonstrated.

2  Experimental

2.1  Fabrication of CNT Film and Strain Sensor

The CNT seals were synthesized by chemical vapor dep-
osition (CVD) method using ferrocene and 1,2-dichlo-
robenzene as the catalyst precursor and carbon source, as 
reported in our previous work [35]. The Ecoflex substrates 
were fabricated by mixing the A and B components of 
Ecoflex 00-30 (Smooth-On) rubbers in a volume ratio of 
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1:1 and coating on a glass substrate. After curing at room 
temperature for 10 h, the Ecoflex thin film, with a thick-
ness of 300 μm, can be separated from the glass substrate. 
The CNT seal was fixed on the linear motor, which can 
move along z-axis and stamp the CNT seal on the Ecoflex 
substrate to form the CNT film. After the dry transfer pro-
cess, UV/O3 treatment was used to enhance the interac-
tion between CNT and the substrate. To fabricate the CNT 
strain sensor, two silver wires were connected on both ends 
of the CNT conductive film by silver conductive gel.

2.2  Device Characterization

The morphology of the CNT block and transferred CNT 
film were characterized by Hitachi S-4800 field emission 
scanning electron microscope. A homemade system was 
used to measure the electromechanical performance of the 
strain sensor. This system consists of a digital multimeter 
(Keithley 2400) and a commercial linear mechanical motor 
(Zolix, TSA 300). Optical transmittances of CNT film were 
characterized by Ocean Optic Spectrometers (Maya 2000 
Pro) together with a balanced deuterium halogen light source 
(Ocean Optics DH-2000-BAL).

3  Result and Discussion

The fabricating process of the CNT film is similar to typog-
raphy, as schematically illustrated in Fig. 1a. A porous CNT 
block served as both the seal and solid ink, while an Eco-
flex thin film was served as the target substrate. The CNT 
seal, which was mounted on the forcemeter, was pressed on 
the Ecoflex substrate and then released. A layer of the CNT 
in the CNT seal could be transferred onto the Ecoflex and 
formed a conductive CNT network on the surface of the pol-
ymer substrate. In this process, if the van der Waals’ interac-
tion between this layer of CNT and the substrate is greater 
than the bonding strength between the CNT and the CNT 
seal, the layer of CNT can be transferred. After the dry trans-
fer process, we can use ultraviolet (UV)/O3 treatment to fur-
ther enhance the interaction and bonding strength between 
the CNT film and the polymer substrate. Through UV/O3 
treatment, the surface of the silicone rubber could develop 
many polar groups [36, 37], which could improve wettabil-
ity and adhesion of the substrate. The prepared CNT film 
is very uniform throughout the stamp range, similar to the 
stamp by a stone seal with the words of “SYSU” (Fig. 1b). 
The photograph of the CNT seal is shown in Fig. 1c. This 
CNT film preparing method is simple, high-efficiency, 
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Fig. 1  Schematic of the fabricating process and as-prepared samples of CNT films by stamp method. a Schematic illustration of the fabricating 
process. b Photograph of the CNT seal and stone seal. c Photograph of the CNT block. d SEM image of CNT block. e SEM image of the CNT 
film on Ecoflex substrate. f Transferred CNT film with an “S” pattern
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energy-saving and eco-friendly, which makes it suitable for 
mass production.

As discussed above, a successful stamp depends on both 
the seal and target substrate. The microstructure of the CNT 
seal has been characterized by scanning electron microscopy 
(SEM), as shown in Fig. 1d. It indicates that the CNT seal 
consists of CNT which were self-assembled into the aniso-
tropic, porous and interconnected framework. This charac-
teristic ensures that the transferred CNT film on the Ecoflex 
substrate has a homogeneous network structure. As shown 
in Fig. 1e, the transferred CNT film formed a uniformity 
network structure and embedded on the surface of the Eco-
flex. Like the stamp, we can also engrave different words or 
patterns on the CNT seal by laser ablation to fabricate CNT 
films with any expected patterns. As a demonstration, a CNT 
word “S” was directly stamped on the Ecoflex substrate by 
an engraved CNT seal (Fig. 1f). The strong attachment of 
the sample to fingerprint shows the excellent conformability 
of our fabricated film, which is very favorable for the strain 
sensor.

The performance of the transferred CNT film depends 
on the technological parameters in the transfer process and 
the mechanical property of the CNT block. By adjusting 
the stamp pressure, we can control the thickness of the 

transferred CNT film. With the increase in stamp pressure, 
the thickness of the CNT film will be increased, resulting 
in a decrease in sheet resistance (Fig. 2a) and transmit-
tance (Fig. S1). For the sample fabricated at the stamp 
pressure of 100 kPa, the sheet resistance and transmit-
tance at 550 nm were about 1.8 kΩ/□ and 50%, respec-
tively. Because Young’s modulus of the porous CNT seal 
(10 mg cm−3) is relatively low [35], the CNT could be con-
tacted with the Ecoflex substrate more easily. The bonding 
strength between the CNT and the substrate will become 
larger with the increase in stamp pressure; therefore, more 
CNT will be transferred onto the substrate. As a compari-
son, a CNT block with higher Young’s modulus (density of 
100 mg cm−3) was used as a seal. The CNT film fabricated 
by this seal has higher sheet resistance 4 kΩ/□ at the same 
stamp pressure (100 kPa) (Fig. S2). The CNT seal also acts 
as a solid ink. In each stamp, the thickness of the CNT film 
is only less than two hundred nanometers [38]. The per-
formance and microstructure of the transferred CNT film 
have no significant change during repeated stamp. The sheet 
resistance increased only about 2 times after 30 times stamp-
ing (Fig. S3). If the stamp is repeated on the same position 
in the substrate, the resistance of the obtained CNT film will 
decrease and finally stabilize. As shown in Fig. 2b, the sheet 
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Fig. 2  Characterization of the electrical properties of CNT films. The sheet resistance of the transferred CNT films a at different stamp pressure, 
b at different stamp number of times. c The change of sheet resistance of the CNT film after ultrasonic washing at different time. Electric stabil-
ity of CNT film d during 1000 cycles stretching under strain of 50%, e during 1000 cycles under bending (180 degrees), f during 1000 cycles 
twisting (90 degrees)
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resistance drops dramatically from the initial 5–2.5 kΩ/□. 
Compared with some recent dry transfer methods [33, 39, 
40], our typography-inspired dry transfer method has advan-
tages in controlling the thickness of the conductive layer, 
lower the cost and reduce the pollution in mass production.

The transferred CNT films have strong interaction with 
the substrate. Even under ultrasonic washing, most of the 
CNT still stick on the surface of the Ecoflex substrate. The 
resistance of the sample only increases by less than 50% after 
40 s of ultrasonic washing, as shown in Fig. 2c. This can be 
further confirmed during the second transfer. By using a 
fresh Ecoflex to dry transfer the as-prepared CNT/Ecoflex 
thin film, there was a tiny change in the resistance of the 
as-prepared CNT film (Fig. S4b). Van der Waals’ force and 
hydrogen bonding forces are the main interaction between 
the transferred CNT and substrate, which can be enhanced 
by UV/O3 treatment. As the UV/O3 treatment time increases, 
the resistance of the CNT film decreases, indicating that the 
connection between the CNT is better (Fig. S4a). UV/O3 
treatment strengthens both the CNT–CNT interaction and 
CNT-Ecoflex interaction. Because of the strong interaction 

between CNT film and Ecoflex substrate, the electrical prop-
erties of the CNT films are stable. After the CNT film was 
stretched (ε = 50%), bent (θ = 180°) and twisted (θ = 90°) for 
1000 cycles, its sheet resistance has tiny change (Fig. 2d–f). 
This indicates that the CNT conductive network is stable 
with little displacement and fracture.

After silver electrodes were connected at both ends of 
the transferred CNT film, it can be directly used as a strain 
sensor. The relative resistance change versus applied strain 
of the sensor is shown in Fig. 3a. It shows two linear ranges 
in the resistance–strain curve, one is at the strain from 0 to 
45%, and the other is from 45 to 85%. The sensing mecha-
nism of the CNT-based strain sensor is illustrated in Fig. 
S5. The disconnection and reconnection of CNT junctions 
during the stretching/releasing cycles played a decisive role 
in the change of relative resistance. Under applied strain 
less than 45%, most of the CNT remain integrity, but some 
CNT could rotate to the axis of stretching. Therefore, the 
change of resistance is mainly caused by the deformation of 
the CNT percolation network. Some intersections between 
CNT will be broken, which also results in an increase in 
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Fig. 3  Sensing properties of CNT-based strain sensors. a Relative resistance response of CNT-based strain sensors versus applied strain. b 
Gauge factor of CNT-based strain sensors versus applied strain. c Relative resistance change versus applied strain over 5000 cycles. d Relative 
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resistance (Fig. S5a). As shown in the inset of Fig. 3a, the 
relative resistance versus applied strain suggests extraordi-
nary linearity. When the applied strain is larger than 45%, 
some of the CNT will be fractured and the resistance will 
increase dramatically as shown in Fig. 3a. As a compari-
son, an aligned CNT array was used as a seal and a layer 
of aligned CNT conductive network was transferred on the 
Ecoflex surface. A strain sensor was fabricated based on this 
CNT film. If the direction of applied strain were perpendicu-
lar to the CNT arrangement, individual CNT was hard to 
tear down. The deformation only separates the CNT. Under 
applied strain, the distance between the adjacent CNTs will 
increase, and some of the CNTs will rotate to the axis of 
stretching and form conductive CNT bridges. As reported 
in our early work [41], the CNTs are still connected to each 
other by the CNT bridges, even the strain arrived 270%. 
Therefore, the sensitivity of the strain sensor with aligned 
CNT is much smaller than the one with random CNT, as 
shown in Fig. S6. The similar sensing mechanism of nanow-
ires- and nanotubes-based strain sensor has been reported 
in our previous work [41] and several papers [26, 42, 43] 
published by other groups.

Furthermore, the thickness of the transferred CNT plays 
a very important role in the sensitivity of the strain sensor. 
Thinner CNT film possesses better flexibility and smaller 
sheet resistance change, compared to the thicker one under 
the same applied strain. Due to the thickness of CNT can 
be adjusted by controlling the transfer pressure or transfer 
times (Fig. S7), the sensitivity of the strain sensor can be 
improved by increasing the transfer pressure or repeating the 
dry transfer process. For example, under the same applied 
strain (80%), the relative resistance changes of strain sensor 
with higher transfer pressure (1000 kPa) are about 530 times 
larger than the one with lower transfer pressure (1 kPa). 
Besides, by repeating the stamping transfer process for four 
times, the sensitivity of the strain sensor can improve about 
3 times.

The CNT-based strain sensor also possesses high sen-
sitivity and large stretchability. As shown in Fig. 3b, the 
GF of the strain sensors is 9960 at 85% applied strain. The 
GF increases with the applied strain. This is mainly due to 
the more junctions of the CNT connection will be broken 
with the increase in strain (Fig. S5), resulting in the dra-
matic increase in resistance. The maximum tensile strain 
exceeds 200% (Fig. S7b). Besides, the CNT-based strain 
sensor exhibited high stability and excellent recoverability 

in 5000 stretching/releasing cycles (as shown in Fig. 3c). 
The dynamic response of the strain sensor is shown in 
Figs. 3d and S8 under different maximum applied strain. 
The repeatability was excellent during 10 stretching/releas-
ing cycles under both small and large strain. It demonstrates 
that the relative resistance monotonically increases with 
the increasing applied strain (Fig. S9). Figure 3e shows 
a small drift in the stretching/releasing cycles. In the first 
few cycles, some unrecoverable damages will be caused in 
the CNT film. This small drift only occurred when we first 
extend the maximum working strain, which will be elimi-
nated after a few cycles. As shown in Fig. S10, during 10 
stretching/releasing cycles at 70% strain, there was no drift 
between each cycle and the hysteresis between loading and 
unloading was negligibly small. Besides, the conductivity 
of CNT can be fully recovered after releasing from strain 
up to 70%. Figure 3f illustrates the GF versus the maximum 
working strain of strain sensors using different materials 
such as CNT [9, 44, 45], nanowires [46, 47], graphene [48, 
49], and other conductive materials [27, 50–52]. Some of 
these strain sensors possess high sensitivity while others 
can withstand the large strain. However, few sensors can 
work under 50% strain with GF larger than 100. By con-
trolling the thickness of CNT film, our strain sensors can 
work under 85% strain with GF up to 9960, and under 200% 
strain with GF up to 274.

The patterns of CNT films also affect the sensitivity of 
the strain sensor. To attain strain sensors with different pat-
terns or strain sensor matrix, CNT block was first patterned 
by laser scribe and this pattern was transferred directly onto 
the polymer substrate. In addition, we can also cover the 
polymer substrate by a patterned mask before the stamp. 
Therefore, well-designed CNT circuits can be easily fabri-
cated on polymer substrate. With single time laser scribe, 
we can fabricate dozens of CNT-based strain sensors with 
particularly designed patterns. As shown in Fig. 4a-c, dif-
ferent patterns of CNT including wave, mesh, interdigital 
electrode, and character were printed on Ecoflex substrate. 
The limiting resolution of line width is about 150 μm, 
as shown in Fig. 4d, two batteries can light up the LED 
through the transferred CNT strips with 150 μm line width. 
The relationship between CNT strips width and the resist-
ance is shown in Figs. 4d and S11. The sensing properties 
of the strain sensor also can be tuned by the pattern of the 
CNT film. To figure out how the CNT patterns affect the 
electronic properties of the strain sensors, serval different 
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patterns of CNT film were fabricated as shown in Fig. 4a, 
b. Electrodes were connected at both ends of these patterns, 
and the tensile strain was applied in the horizontal direction. 
As shown in Fig. 4e, CNT-based strain sensor with different 
numbers of waves had different electromechanical perfor-
mances. If there are no waves in the CNT network (Fig. 4a 
(i)), the resistance will change dramatically even under 
small applied strain. With the increase in wave numbers, 
the stretchability of the CNT film will increase (Fig. 4a 
(iii)). As shown in Fig. 4f, the sensitivity of the strain sen-
sor with only parallel CNT pattern is much higher than the 
strain sensor with both parallel and vertical CNT networks, 
which shows that the vertical connection can enhance the 
flexibility of the strain sensor.

Several applications of the strain sensor are demonstrated 
in Fig. 5. The strain sensor can detect several kinds of human 
motion. Because of the small Young’s modulus and the 
ultrathin structure, the strain sensor has perfect adhesion and 
comfortability to human skin. In Fig. 5a, the strain sensor 
can be attached to a human finger, the resistance changes for 

different levels of finger bending. Figure 5b demonstrates 
joint motion monitoring in the human wrist. During the five 
bending and stretching cycles, the resistance response was 
stable and repeatable. Besides human motion detection, the 
strain sensor can also apply to robots as shown in Fig. 5c. 
A tiny signal such as pulse can be measured by our strain 
sensor as shown in Fig. 5d. It is clearly shown that three 
kinds of pulse wave including percussion wave, tidal wave, 
and diastolic wave can be well distinguished by our strain 
sensor. In addition, we can monitor the respiration signal by 
installing the strain sensor on a respirator as shown in Fig. 5e. 
When we seal a pasty test tube with our strain sensor, it can 
detect tiny change of air pressure. As shown in Fig. 5f, with 
1% change of air pressure, the output signal of our strain 
sensor was distinguishable, and the response is quite stable 
during 5 cycles. In Fig. 5g–i, the strain sensor was attached 
on the throat of a volunteer; the received electronic signals 
were different due to the different pronunciation of words 
(“carbon,” “nanotube” and “graphene”). The as-mentioned 
application shows the great potential of our strain sensor in 
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flexible devices for motion detection, health monitoring, and 
voice recognition.

4  Conclusions

In this paper, we have developed a simple and environ-
mentally friendly method via stamp contact printing 
process for the fabrication of stretchable and sensitive 
patternable carbon nanotube sensing devices. This dry 
transfer technique provides new insight and has a promis-
ing future in the mass production of the strain sensor. The 
strain sensor possesses impressively high sensitivity (GF 

up to 9960) in a wide range of applied strain. Besides, 
the strain sensors can detect tiny signals such as pulse, 
breath, and voice as well as larger deformation such as 
finger motion and robot movement. It suggested that this 
typography-inspired dry transfer method can be extended 
to other conductive materials and other substrates.
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