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Synergistic “Anchor‑Capture” Enabled by Amino 
and Carboxyl for Constructing Robust Interface 
of Zn Anode
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Yinzhu Jiang1,2,5 *

HIGHLIGHTS

• The synergistic “anchor-capture” mechanism of polar groups on Zn stripping/plating process is firstly proposed.

• The amino group firmly anchors on Zn surface and the carboxyl group strongly captures  Zn2+, constructing a robust anode–electrolyte 
interface and inducing uniform Zn deposition.

• The ultra-stable cycle lifespan of Zn–Zn symmetric cell (over 2800 h) and high utilization rate of Zn anode (the depth of discharge 
up to 68% for 200 h) are achieved under the proposal of synergistic “anchor-capture.”

ABSTRACT While the rechargeable aqueous zinc-ion batteries 
(AZIBs) have been recognized as one of the most viable batteries for 
scale-up application, the instability on Zn anode–electrolyte interface 
bottleneck the further development dramatically. Herein, we utilize the 
amino acid glycine (Gly) as an electrolyte additive to stabilize the Zn 
anode–electrolyte interface. The unique interfacial chemistry is facili-
tated by the synergistic “anchor-capture” effect of polar groups in Gly 
molecule, manifested by simultaneously coupling the amino to anchor 
on the surface of Zn anode and the carboxyl to capture  Zn2+ in the 
local region. As such, this robust anode–electrolyte interface inhibits 
the disordered migration of  Zn2+, and effectively suppresses both side 
reactions and dendrite growth. The reversibility of Zn anode achieves 
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a significant improvement with an average Coulombic efficiency of 99.22% at 1 mA  cm−2 and 0.5 mAh  cm−2 over 500 cycles. Even at a 
high Zn utilization rate (depth of discharge,  DODZn) of 68%, a steady cycle life up to 200 h is obtained for ultrathin Zn foils (20 μm). The 
superior rate capability and long-term cycle stability of Zn–MnO2 full cells further prove the effectiveness of Gly in stabilizing Zn anode. 
This work sheds light on additive designing from the specific roles of polar groups for AZIBs.

KEYWORDS Zn anode–electrolyte interface; Polar groups; Synergistic “anchor-capture” effect; Side reactions; Dendrite growth

1 Introduction

Rechargeable aqueous metal-ion batteries are of great poten-
tials for future scale-up energy storage systems, on account 
of their low cost and high safety [1–4]. Among them, aque-
ous zinc-ion battery (AZIB) appears to be an attractive can-
didate due to the numerous intrinsic merits of Zn metal, 
e.g., relatively low redox potential (− 0.76 V vs. SHE), high 
gravimetric capacity (820 mAh  g−1) and volumetric capacity 
(5855 mAh  cm−3), and abundant reserves [5–7]. Nonethe-
less, dendrite growth and side reactions caused by instability 
and complex chemistry on the Zn anode–electrolyte inter-
face greatly decrease the utilization rate and reversibility, 
manifesting as low Coulombic efficiency (CE) [8–13].

The stability of Zn anode is largely determined by the 
diffusion and migration behavior of  Zn2+ at the interface 
[14, 15]. In general,  Zn2+ near the anode surface follows 2D 
diffusion mechanism, which aggregates at prior nucleation 
sites to capture electrons and then be reduced to form initial 
protrusion [16]. To minimize the surface energy, such reduc-
tion of  Zn2+ tends to trigger the protrusion vertical growth 
and the formation of dendrites, leading to an increased sur-
face area of Zn exposing to water molecules to accelerate the 
hydrogen evolution reaction (HER) [17]. The  OH− generated 
by hydrogen evolution elevates the local pH value near the 
anode and react with  ZnSO4 electrolyte to further deterio-
rate the interface by generating the inactive by-product of 
 Zn4SO4(OH)6·xH2O (ZSH) on the anode [18], which exac-
erbates the dendrite growth and side reactions.

Up till now, many progress has been achieved in surface 
modification [19–22], structural design [23, 24], and elec-
trolyte modification [25–28] to address the above issues. 
Among them, electrolyte modification is one of the most 
effective strategies with wide applications. Natural bio-
molecules, such as amino acids and their derivatives, are 

attracting great attention for modifying the electrolytes. 
For instance, it was found that silk fibroin (SF) with mainly 
β-sheet conformation into  ZnSO4 electrolyte can adhere to 
the surface of Zn anode and regulate the uniform Zn depo-
sition [27, 29], while the one with the secondary structure 
transformation from α-helices to random coils in the aque-
ous electrolytes is inclined to participate in  Zn2+ solvation 
structure due to more exposed polar groups [30]. Moreover, 
Xu et al. [31] proposed a lysozyme membrane constituted 
by β-configuration dominant amyloid aggregates to facilitate 
uniform  Li+ flux in lithium metal batteries. As for amino 
acids, positively charged ones such as arginine are confirmed 
to electrostatically adsorb on Zn anode surface and regulate 
the interface charge states [32]. Cysteine, which possesses 
more complex configuration, contributing to the reconstruc-
tion of solvation structure and anode–electrolyte interface 
[33]. These additives are rich in various polar groups such as 
amino (−NH2), carboxyl (−COOH), sulfhydryl (−SH), etc. 
However, the efficacy of additives and the mechanism elu-
cidation for specific polar group remain yet to be explored, 
which are especially critical for precisely designing func-
tional additives applied into AZIBs.

Herein, the simplest amino acid, glycine (Gly), which 
consists of one amino and one carboxyl was selected as the 
electrolyte additive. The adsorption of amino promotes Gly 
with an anchoring effect on the surface of Zn metal, ena-
bling a stable Zn anode–electrolyte interface and inhibiting 
the side reactions caused by water decomposition. In addi-
tion,  Zn2+ is captured owing to the strong coordination with 
carboxyl, thus alleviating its disordered diffusion. Under 
this synergistic “anchor-capture” effect, side reactions and 
dendrite growth at the Zn anode–electrolyte interface are 
significantly suppressed, realizing a long-lifespan and stable 
Zn anode with excellent rate performance and long-term 
cycling stability.
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2  Experimental Procedures and Calculations

2.1  Electrolytes Preparation and Cathode Material 
Synthesis

Zinc sulfate heptahydrate  (ZnSO4·7H2O, AR) and Zn foil 
(99.999%, 150–250 μm thickness) were purchased from 
Sinopharm Chemical Reagent Co., Ltd. Sodium sulfate 
 (Na2SO4, AR) was produced by Macklin. Glycine (Gly, 
99.5–100.5%), N-acetylglycine (Ac-Gly, 99%) and glyci-
namide hydrochloride (Gly-NH2, 98%) were supplied by 
Aladdin. Electrolytes were prepared by adding 0.1 M (M: 
mol  L−1) of Gly, Ac-Gly and Gly-NH2 into 2 M  ZnSO4 
solution. The  MnO2 cathode was synthesized by a facile 
hydrothermal method. Typically, 0.474 g of  KMnO4 and 
2.718 g of  MnSO4 were dissolved in 30 mL deionized 
water separately. Then mixed these two solutions quickly 
and stirred for 30 min until the solution turned purple-
brown. Next, the mixed solution was transferred to an 
autoclave and heated at 140 °C for 12 h. The obtained 
precipitates were washed with deionized water by several 
times and dried in air at 80 °C for 12 h.

2.2  Material Characterizations

The surface morphology and phase structures were 
assessed by the scanning electron microscopy (SEM, 
Hitachi S-4800) and X-ray diffraction analyzer (XRD, 
Bruker D8 diffractometer, Co-Kα, λ = 1.789 Å). Fourier 
transform infrared spectroscopy (FTIR) was carried out 
on Thermo Scientific Nicolet iS20. X-ray photoelectron 
spectroscopy (XPS) was performed by Thermo Scien-
tific K-Alpha equipped with Al Kα X-ray source (12 kV, 
6 mA). The O–H stretching of different electrolytes was 
collected by Raman spectroscopy (Raman, HORIBA Sci-
entific LabRAM HR Evolution, 532 nm laser). The solva-
tion structure of  Zn2+ was confirmed by nuclear magnetic 
resonance spectrometer (2H NMR, Bruker 400 MHz), the 
solvent was  D2O.

2.3  Electrochemical Measurements

The Zn–Zn symmetric cells, Zn-Ti half cells and Zn-MnO2 
full cells were assembled in atmosphere using CR2025 

coin-type cell, which were tested by the Neware BTS-5 
test system. Electrodes were cut into disks with a diam-
eter of 16 mm with glass fiber filters (Whatman) used as 
separators. The cathode electrode was prepared by mix-
ing  MnO2, Ketjen black (KB) and polyvinylidene fluoride 
(PVDF) with a mass ratio of 7:2:1 in N-methyl-2-pyrro-
lidone (NMP) and casted onto Ti foils (10 μm). The elec-
trode was dried at 120 °C for 12 h in vacuum. The mass 
loading of active material was around 2.5 mg.

The cyclic voltammetry (CV), linear sweep voltammetry 
(LSV), potentiodynamic scanning (Tafel), chronoamper-
ometry (CA) measurements and electrochemical imped-
ance spectroscopy (EIS) were carried out on the CHI760E 
electrochemical workstation. The average differential capaci-
tance was derived from CV data with different scan rates 
(from 2 to 10 mV  s−1) and a voltage range of − 15 to 15 mV. 
The hydrogen evolution performance was recorded by per-
forming LSV test at 5 mV  s−1 with Ti foil as the working 
electrode, Zn plate as the counter electrode and Ag/AgCl as 
the reference electrode, respectively. Tafel plots were per-
formed at a scan rate of 0.01 V  s−1 with Zn plate as the work-
ing electrode, Ti foil as the counter electrode and Ag/AgCl 
as the reference electrode. The CA curves were measured 
at a fixed overpotential of − 150 mV. The EIS measurement 
was finished with a frequency range of 0.01 ~ 1,000,000 Hz. 
The galvanostatic cycled Zn plates were obtained from two-
electrode systems using Zn plates (1 cm × 3 cm) as both 
working and counter electrodes soaked in 2 M  ZnSO4 and 
2 M  ZnSO4 + 0.1 M Gly/Ac-Gly/Gly-NH2 electrolytes. The 
soaking area of each electrode was 1  cm2.

The transfer number of  Zn2+ was calculated according to 
potentiostatic polarization method [34], which can be given 
by:

where ISS and I
0
 represent the steady-state current and initial 

current, RSS and R
0
 are the charge transfer resistances of 

steady-state and initial state, and ΔV  is the applied overpo-
tential (5 mV).

2.4  Ab‑initio Calculations

The surface adsorption calculation related to the interac-
tion between Zn slab and molecules was performed by using 

(1)tZn2+ =
ISS

(

ΔV − I
0
R
0

)

I
0

(

ΔV − ISSRSS

)
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the Vienna ab initio simulation package (VASP) [35, 36] 
based on Density functional theory (DFT). The projec-
tor augmented-wave (PAW) method [37] was carried out 
to represent the interactions of electrons with ion cores. 
The generalized gradient approximation (GGA) param-
eterized by the Perdew-Burke-Ernzerhof (PBE) method 
[38] with D3 correction [39] that was used to describe the 
van der Waals corrections. The energy cutoff was set to be 
420 eV. The Brillouin-zone integration was sampled with 
a Γ-centered k-point mesh of 2 × 2 × 1 for all adsorption 
calculations. The convergence criteria for forces and energy 
were set to 0.02 eV Å−1 and  10–5 eV, respectively.

On the Z direction, there is 15 Å vacuum to avoid the 
interaction between adjacent images for slab model. A 5 × 5 
supercell with four-layer Zn (002) slab was used to represent 
the absorbed surface for molecules, and the bottom two lay-
ers were fixed to simulate the bulk property. Visualization of 
the crystal structures was performed using VESTA [40] and 
data post-processing were used by VASPKIT code [41]. The 
adsorption energy between Zn slab and different molecules 
was defined as following equation:

where EZn−Slab+Molecules , EZn−Slab and EMolecules represent the 
total energies of the Zn (002) Slab with adsorbed molecules, 
Zn (002) slab, and adsorbed molecules, respectively.

2.5  Molecular Dynamics (MD) Simulations

Classical MD simulations were carried out using 
GROMACS 2022.2 [42] to provide insights on the electro-
lytes designed in this work. The force field parameters of 
 Zn2+ ions and SPC/E [43] water model were obtained with 
Amber03 force field [44]. The GAFF force field [45] param-
eters of glycine and sulfate ion were generated with Acpype 
program [46], and the corresponding atom charges were 
based on restrained electrostatic potential (RESP) charges 
generated by Multiwfn [47]. Initially, 12 Gly, 40 Zn, 40  SO4 
and 671  H2O molecules were packed into a 30 × 30 × 30 Å3 
box using the packmol software [48].

For comparison, zinc sulfate solution was simulated by 
packing 40 Zn, 40  SO4 and 703  H2O molecules in a 30 × 30 
× 30 Å3 box. All the systems were first submitted to energy 
minimization by using the steepest descent method. Then, 
they were heated from 10 to 298.15 K in 100 ps, followed 
by 200 ps equilibration under isothermal–isobaric ensemble 

(2)Eads = EZn−Slab+Molecules − EZn−Slab − EMolecules

(NPT) at 1 bar. For the production run, an additional 20 ns 
NPT simulation was performed. The integration time step 
was 1 fs. For NPT simulations, the temperature was con-
trolled by coupling the system with a Nosé–Hoover thermo-
stat [49] at a time constant of 2 ps, and the pressure was con-
trolled using the Parrinello–Rahman pressure [50] coupled 
with a 5 ps time constant. Electrostatic interactions were 
treated using the Particle–Mesh–Ewald (PME) methods [51, 
52] with a 1.3 nm cutoff distance. VMD software [53] was 
used to visualize the systems and obtain the ion association 
state.

2.6  Quantum Chemistry (QC) Calculations

Quantum chemistry (QC) calculations were performed using 
the Gaussian 16 software [54] to calculate the structures and 
binding energies of  Zn2+-Gly and  Zn2+-H2O complexes. The 
structure optimization and frequency calculations were per-
formed at B3LYP-D3(BJ)/def2-TZVP level [55, 56]. Then a 
single-point energy calculation of each optimized structure 
was performed at the same functional and basis set. The 
universal solvation model SMD [57] was used to simulate 
the aqueous environment. The binding energy (BE) is cal-
culated as follows:

where EAB , EA , and EB denote the total energies of the AB 
complexes, bare A, and bare B, respectively. EBSSE is the 
basis set superposition error (BSSE) correction energy [58], 
which is used to correct the energy of interaction in all the 
complexes.

3  Results and Discussion

3.1  “Anchor” Role of Amino Group for Anti‑Corrosion

First of all, 2 M  ZnSO4 electrolytes with different concen-
trations of Gly (0.05/0.1/0.5 M) were used to assemble 
Zn–Zn symmetric cells. Under the galvanostatic condition 
of 1 mA  cm−2 and 1 mAh  cm−2, the cell with 0.1 M Gly 
shows an ultra-stable cycling life over 1000 h (Fig. S1). 
Therefore, the concentration of 0.1 M was chosen for fur-
ther study on Gly. To accurately compare the roles of dif-
ferent polar groups, N-acetylglycine (Ac-Gly) and glycina-
mide hydrochloride (Gly-NH2) are selected as the other two 

(3)EBE = EAB −
(

EA + EB

)

− EBSSE
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additives, which are derived by the amidation of amino and 
carboxyl groups in Gly, respectively. The detailed molecular 
structures of Gly, Ac-Gly and Gly-NH2 are shown in Fig. 1a. 
The amide group (–CO–NH–, highlighted by light gray 
translucent oval area) is usually less active [59], which has 

negligible effect on Zn anode during cycling. After adding 
0.1 M Gly/Ac-Gly/Gly-NH2 into 2 M  ZnSO4 solution, the 
pH values of electrolytes were first determined. As can be 
seen from Fig. S2, the pH value declines from 3.79 for bare 
 ZnSO4 to 2.94/1.37/2.52 for  ZnSO4 + Gly/Ac-Gly/Gly-NH2, 

Fig. 1  a Molecular structures of Gly, Ac-Gly and Gly-NH2. The blue, brown, red and pink balls represent N, C, O and H atoms, respectively. 
b XRD patterns of Zn plates soaked in different solutions for 7 days. The pH values of  ZnSO4 + Gly/Ac-Gly/Gly-NH2 solutions were adjusted 
to 1.37. c Tafel plots of the Zn anode tested with three-electrode system in different electrolytes. d LSV curves of Zn plate tested with three-
electrode system in different electrolytes. e Average differential capacitance for Zn in different electrolytes. FTIR spectra of Zn plates soaked in 
different solutions for 7 days: f Gly/H2O solution; g Ac-Gly/H2O and Gly-NH2/H2O solutions. h Adsorption energies comparison of  H2O, Gly, 
Ac-Gly and Gly-NH2 molecules on the Zn (002) facet, insets are the corresponding adsorbed models for different situations. The gray balls repre-
sent Zn atoms. i The charge density difference of the Zn slab with Gly molecule along the c axis (iso-value = 6 ×  10–4 e  Bohr−3). The yellow and 
cyan iso-surfaces represent the increase and decrease in electron density, respectively
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respectively. To evade the effect of pH, dilute sulfuric acid 
(10 wt.%) was added to the  ZnSO4 and  ZnSO4 + Gly/Gly-
NH2 electrolytes to adjust the pH to 1.37.

Compared with the normal  ZnSO4 solution (pH = 3.79), 
after immersed in  ZnSO4 solution with lower pH for 7 days, 
the Zn plate presents the similar morphology with rough 
surface covered by a mass of irregular flake-like by-prod-
ucts (Fig. S3), which are confirmed by the X-ray diffraction 
(XRD) patterns as  Zn4SO4(OH)6·xH2O (Fig. 1b), indicat-
ing that the decline in pH would not inhibit the formation 
of by-products. On the contrary, no undesired by-products 
and diffraction peaks appear for the Zn plate immersed in 
 ZnSO4 + Gly/Gly-NH2 solutions (pH = 1.37), as well as the 
overall smooth surfaces display step-like or isolated Zn 
islands randomly distributed (highlighted by yellow solid 
line circles) morphology, respectively. Under the presence 
of Ac-Gly, large cavities (highlighted by yellow dash line cir-
cles) and a rugged morphology are discovered on the surface 
despite no by-products to be observed. Moreover, the pH 
values of these solutions following immersion with Zn plates 
were also determined. As shown in Fig. S4, the pH values of 
 ZnSO4 + Gly/Ac-Gly/Gly-NH2 solutions vary smaller than 
that of  ZnSO4 solution, implying the better anti-corrosion 
property of these additives. Especially, the increase of pH 
for  ZnSO4 + Gly solution is only 0.65, further demonstrating 
that Gly molecules can effectively inhibit side reactions and 
stabilize the local pH.

To assess the corrosion behaviors of Zn anode, the Tafel 
plots of Zn–Zn symmetric cells using different electrolytes 
are recorded in Fig. 1c, with corresponding corrosion cur-
rent density ( jcor)/corrosion potential ( Vcor ) summarized in 
Table S1. The difference between each Vcor is negligible. As 
expected, the Zn anode in  ZnSO4 + Gly electrolyte deliv-
ers the lowest jcor of 1.11 mA  cm−2, which indicates the 
prominent anti-corrosion. The decreases of jcor compared 
to bare  ZnSO4 electrolyte with the addition of Ac-Gly and 
Gly-NH2 also demonstrate that they suppress the corrosion 
of Zn anode to some extent. Moreover, the HER perfor-
mance is a critical indicator to evaluate the stability of Zn 
anode, which is reflected by the magnitude of cathodic cur-
rent in linear sweep voltammetry (LSV) curves. To allevi-
ate the electrochemical reduction of  Zn2+ on surface, the 
base electrolyte is changed from 2 M  ZnSO4 to 1 M  Na2SO4 
solution. In Fig. 1d, the increased HER overpotential and 
decreased HER current further confirm the positive roles of 
Gly and Gly-NH2 in blocking side reactions. However, only 

decreased HER current can be observed in  Na2SO4 + Ac-Gly 
electrolyte, which can be attributed to the de-solvation effect 
of carboxyl (as discussed in the following section).

In order to understand the anti-corrosion performance of 
Zn anode in different electrolytes, the differential capaci-
tance tests were performed. The average differential capac-
itance ( C ) is closely relevant to the electric double-layer 
(EDL) structure near the electrode surface [60–62], which 
can be derived from the following equation:

where i is the average current density and v is the corre-
sponding scan rate of a cyclic voltammetry (CV) curve.

As shown in Figs. S5 and 1e, the C of Zn anode sig-
nificantly decreases to 52 and 100 μF  cm−2 with Gly and 
Gly-NH2 additives, respectively. We conjecture that both 
Gly and Gly-NH2 can participate into the EDL structure 
and interact with Zn anode surface. In contrast, after add-
ing Ac-Gly, a prominent increase of C is observed from 195 
to 275 μF  cm−2. This might be caused by the corrosion of 
Zn anode that leads to more exposure of surface area to 
electrolyte, as large cavities observed in SEM image in Fig. 
S3. To verify the hypothesis mentioned above, the Fourier 
transform infrared spectroscopy (FTIR) was performed. The 
soaked Zn plates from Gly/H2O and Gly-NH2/H2O solutions 
exhibit the similar spectra variation compared with bare Zn 
in the range of 600 ~ 1700  cm−1, including the C=O stretch-
ing at 1597  cm−1 and O–H bending at 902  cm−1, respec-
tively (Figs. 1f, g). In addition, peaks at 3200 ~ 3500  cm−1 
are observed which correspond to the -NH2 stretching.

These results convincingly confirm that Gly and Gly-NH2 
can spontaneously adsorb on Zn surface in solution media. 
Nevertheless, for Zn plate soaked in Ac-Gly/H2O solution, 
weak signals of –NH2 and C=O stretching are detected, 
indicating the poor adsorption of Ac-Gly (Fig. 1g). The 
energy-dispersive X-ray spectroscopy (EDS) mapping also 
verifies the uniform coverage of Gly on Zn surface (Fig. 
S6). Ab-initio calculations were also conducted to study the 
adsorption energies ( Eads ) of different molecules on the Zn 
(002) facet (Fig. 1h). Interestingly, the interaction between 
Zn surface and Gly molecule is much stronger than that of 
 H2O molecule (− 0.241 eV), no matter the N-terminal from 
amino or the O-terminal in –C=O from carboxyl. Specifi-
cally, Gly molecule prefers to adsorb on Zn surface by amino 
since the Eads in N-terminal state is much larger than that in 
O-terminal state (− 0.736 vs. − 0.479 eV). The relatively 

(4)i = C ⋅ v
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larger Eads of Gly-NH2 (− 0.942 eV) and smaller Eads of Ac-
Gly (− 0.637 eV) on Zn surface also demonstrate the prior 
interplay between amino and Zn atoms.

To determine whether the amino is physically or chemi-
cally adsorbed on Zn surface, the charge density difference 
calculations and high-resolution X-ray photoelectron spec-
troscopy (XPS) spectra were carried out. In Fig. 1i, appar-
ent overlapped electron cloud between Zn and N atoms is 
found, suggesting a stable affinity between Gly and Zn. 
Meanwhile, the characteristic peak of N–Zn is distinctly 
observed at 398.9 eV in the N 1s spectrum (Fig. S7). These 
results confirm that Gly and Gly-NH2 chemically anchor on 
the Zn surface via amino group, which plays a dominant role 
in inhibiting side reactions.

3.2  “Capture” Role of Carboxyl Group for Uniform 
Deposition

Apart from the inhibition of side reactions, the effect of 
Gly, Ac-Gly and Gly-NH2 on  Zn2+ deposition behavior was 
also explored. As shown in Fig. 2a, compared with bare 
 ZnSO4 electrolyte, the nucleation overpotentials of  Zn2+ in 
 ZnSO4 + Gly and  ZnSO4 + Ac-Gly electrolytes significantly 
increase by 46 and 38 mV, respectively, much larger than 
that in Gly-NH2-containing electrolyte (29 mV). It is well 
known that a higher nucleation energy barrier for  Zn2+ is 
conducive to the formation of finer nuclei and uniform depo-
sition [32, 63, 64]. Subsequently, the chronoamperometry 
(CA) measurements were utilized to assess the evolution of 
deposition and growth of Zn nuclei under an overpotential 
of − 150 mV with Zn–Zn symmetric cells (Fig. 2b). The 
growth rates of current density caused by polarization dur-
ing 50–200 s were calculated and shown in Table S2. In 
general, the rapid increase of current density with time in 
bare  ZnSO4 electrolyte reflects that the surface of Zn anode 
is dominated by 2D diffusion mode, in which  Zn2+ migrates 
along the Zn surface and the consequent “tip effect” leads 
to the continuous accumulation of Zn nuclei, which brings 
about the severe dendrite issues [16, 65, 66].

In contrast, the addition of Ac-Gly and Gly-NH2 can 
reduce the current growth rate, which is caused by the 
restricted 2D diffusion of  Zn2+. For Gly-containing elec-
trolyte, the disordered  Zn2+ flux is regulated and  Zn2+ is 
directly reduced on the surface, yielding a stable 3D dif-
fusion mode with the lowest current density response. The 

transfer number of  Zn2+ ( tZn2+ ) in different electrolytes was 
tested by potentiostatic polarization method. Figures S8a 
and c show the electrochemical impedance spectroscopy 
(EIS) spectra of Zn–Zn symmetric cells in bare  ZnSO4 and 
 ZnSO4 + Gly electrolytes and the corresponding CA curves 
under the applied overpotential of 5 mV are displayed in 
Figs. S8b, d. As evidenced in Fig. S8e, the symmetric cell 
delivers a higher tZn2+ with Gly-containing electrolyte, fur-
ther indicating the more homogeneous  Zn2+ flux and con-
centration gradient at the interface [67].

The above results have proved that the additives can regu-
late the kinetics of  Zn2+. Here, the interactions among  Zn2+, 
 H2O and Gly molecules were further analyzed using quan-
tum chemistry (QC) calculations. The calculated binding 
energies suggest that  Zn2+ appears to be more favored to 
combine with Gly than  H2O (Fig. 2c). Besides, the electro-
static potential value for Gly molecule significantly increases 
when  Zn2+ approaches the carboxyl group (Figs. 2d and S9), 
implying the transfer of electrons from nucleophilic site (car-
boxyl group) to  Zn2+, which in favor of building firm bond 
among them in an implicit solution environment. Molecular 
dynamics (MD) simulations were carried out to investigate 
the solvation structure of  Zn2+ in  ZnSO4 + Gly electrolyte. 
In Fig. 2e, the double bonded oxygen atom from carboxyl in 
one Gly molecule obviously participates into the solvation 
sheath and replaces one of the  H2O molecules around  Zn2+, 
indicating an explicit change in solvation structure.

The corresponding radial distribution functions (RDFs) 
and coordination number analysis in different electrolytes 
were also performed. In bare  ZnSO4 electrolyte, a sharp peak 
of  Zn2+–O at around 1.9 Å away from  Zn2+ is observed, 
which should refer to the participation of  H2O into the 
solvation sheath, and the average coordination number is 
simulated to be 5.5 (Fig. S10). In  ZnSO4 + Gly electrolyte, 
it is clear to see that the peak of  Zn2+–O (Gly) appears at 
a closer distance and displays much stronger intensity than 
that of  Zn2+-N (Gly), and the average coordination number 
of  Zn2+–O  (H2O) is reduced to be 5.3, demonstrating that 
Gly molecule mainly coordinates with  Zn2+ via the car-
boxyl group rather than the amino group and can partially 
de-solvate  Zn2+ with a new solvation structure (Figs. 2f, g 
and S11). For further verifying the de-solvation effect of 
carboxyl group, the Raman spectra and nuclear magnetic 
resonance (NMR) spectra of different electrolytes were 
conducted. As shown in Fig. S12a, b, the O–H stretching 
vibration at around 3100 ~ 3680   cm−1 shifts to a higher 
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Fig. 2  a CV curves for Zn nucleation in Zn-Ti cells using bare  ZnSO4 and  ZnSO4 + Gly/Ac-Gly/Gly-NH2 electrolytes. b The CA curves of 
Zn anode tested in Zn–Zn symmetric cells using different electrolytes. c Binding energies for  Zn2+ with different molecules  (H2O and Gly) 
under QC calculations. d Electrostatic potential mapping of the Gly-Zn2+ compound. e 3D snapshot of MD simulations for  ZnSO4 + Gly elec-
trolyte and partial enlarged snapshot representing  Zn2+ solvation structure. f Simulated radial distribution functions (RDFs) for  Zn2+-N (Gly) 
and  Zn2+-O (Gly) collected from MD simulations in  ZnSO4 + Gly electrolyte. g Simulated RDFs and coordination numbers analysis for  Zn2+-O 
(Gly) in  ZnSO4 + Gly electrolyte. h NMR spectra for  ZnSO4/ZnSO4 + Gly electrolytes. i Schematic illustration of Zn deposition behaviors in 
 ZnSO4 electrolyte with/without Gly
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wavenumber after adding Gly and Ac-Gly, demonstrating 
that both the molecules with carboxyl group have stronger 
interaction with water molecules and could break the origi-
nal hydrogen bonding network, which weaken the activity 
of water [68]. On the contrary, the Gly-NH2 molecules with-
out carboxyl group do not cause shift of the O–H stretching 
compared with bare  ZnSO4 (Fig. S12c). As for the NMR 
results in Fig. 2h, the 2H peak of  D2O shifts from 4.719 to 
4.716 ppm in  ZnSO4 + Gly electrolyte, implying that more 
free water is released, which further proves that Gly can 
change the solvation structure of  Zn2+ [69]. Furthermore, 
the mean-squared displacement (MSD) versus time was 
performed to characterize the diffusion rate of  Zn2+ in dif-
ferent electrolytes (Fig. S13). By adding Gly, the plot slope 
for MSD versus time increases, which can be inferred that 
 Zn2+ diffuses faster to Zn surface in  ZnSO4 + Gly electrolyte.

3.3  Synergistic “Anchor‑Capture” Mechanism

Based on the above results, a synergistic “anchor-capture” 
effect (Fig. 2i) of amino and carboxyl groups in Gly mol-
ecule emerges as the mechanism of stabilizing Zn anode. In 
details,  Zn2+ would solvate with  H2O to form {Zn(H2O)6}2+ 
in bare  ZnSO4 electrolyte and migrate to the surface of Zn 
anode under the internal electric field. On the one hand, 
the  H2O molecule would decompose and generate  H2 after 
contacts with Zn metal, thus elevating the pH value of local 
regions and further promoting the formation of by-products 
(ZSH). On the other hand,  Zn2+ randomly diffuses along 
the rough metal surface and aggregates at the prior nuclea-
tion sites to form small prominence. The consecutively dete-
riorated surface conditions significantly induce the growth 
of Zn dendrites, eventually leading to the failure of battery 
system by piercing the separator and causing short circuit.

On the contrary, the introduction of Gly molecule can 
firmly anchor on the Zn anode surface via the N atom of 
amino, which prevents the contact between  H2O and Zn 
metal, thus protecting Zn anode from side reactions. Mean-
while, the  Zn2+ is captured by Gly due to the strong nucleo-
philicity of carboxyl, effectively confining the disordered 2D 
diffusion and guiding the uniform deposition. At the case of 
Gly-NH2 and Ac-Gly, amino or carboxyl groups alone cannot 
effectively stabilize the interface, thus eventually Zn anode 
would deteriorate and come to failure.

3.4  Synergistic “Anchor‑Capture” Enabled 
Electrochemical Performance

First, the long-term CE performances in different electro-
lytes are compared by assembling Zn-Ti asymmetric cells. 
As shown in Figs. 3a and b, the introduction of Gly achieves 
an ultra-stable operation over 500 cycles and delivers a high 
average CE of 99.22% at 1 mA  cm−2 and 0.5 mAh  cm−2, 
which illustrate that the Zn anode can maintain high revers-
ibility under the synergistic effect of amino and carboxyl 
groups. For the bare  ZnSO4 electrolyte, the Zn-Ti cell dis-
plays a notable fluctuating CE at about the 214th cycle, and 
the cut-off voltage of charging (1.0 V) cannot be reached, 
primarily due to the deteriorating dendrite growth and severe 
side reactions. However, Zn-Ti cells with Ac-Gly and Gly-
NH2 exhibit more chaotic fluctuation of CE, mainly ascribed 
to the uneven stripping and the concentrated plating beyond 
cavities or near dendrites. Even under a much faster kinet-
ics at 10 mA  cm−2 and higher deposition capacity of 1 mAh 
 cm−2, the Zn anode with Gly can still keep stable cycling 
with a high average CE of 99.15% for 580 cycles, which sig-
nificantly surpasses that of Ac-Gly and Gly-NH2 (Fig. S14). 
These results demonstrate the effectiveness of synergistic 
“anchor-capture” mechanism in homogenizing Zn deposi-
tion and promoting the reversibility of Zn anode.

The Zn–Zn symmetric cells using  ZnSO4 + Gly electro-
lyte can also deliver much better cycling stability under gal-
vanostatic condition. The voltage profiles in Fig. 3c depict 
that the Zn–Zn cell with Gly additive exhibits an ultra-long 
cycle lifespan over 2800 h without obvious overpotential 
fluctuation at a current density of 1 mA  cm−2. On the con-
trary, the cell cycled in  ZnSO4 electrolyte maintains stable 
for merely 90 h and fails with a sudden voltage drop, as a 
result of the short circuit due to the formation of disordered 
Zn dendrites which penetrate through the separator [70]. The 
stability of Zn anode last only for 190 and 310 h with amino 
(Gly-NH2) or carboxyl (Ac-Gly) groups alone, respectively. 
Moreover, as shown in EIS results of Fig. S15, the Zn–Zn 
cell with Gly-containing electrolyte displays a similar charge 
transfer resistance ( Rct ) compared with that in bare  ZnSO4 
electrolyte before cycling, indicating that the adsorption of 
Gly has no negative impact on the charge transfer process 
near Zn anode surface. Nevertheless, the symmetric cell 
with Gly-containing electrolyte shows a lower Rct than that 
with  ZnSO4 electrolyte after 20 cycles, due to the robust 
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Fig. 3  a CE comparison of Zn-Ti cells in bare  ZnSO4 and  ZnSO4 + Gly/Ac-Gly/Gly-NH2 electrolytes at 1 mA  cm−2 and 0.5 mAh  cm−2 and b 
corresponding voltage profiles at different cycles, respectively. The voltage profiles of Zn–Zn symmetric cells using different electrolytes per-
formed at c the current density of 1 mA  cm−2 with the areal capacity of 1 mAh  cm−2, the insets are detailed voltage profiles at different cycle 
time ranges; d the current density of 5 mA  cm−2 with the areal capacity of 5 mAh  cm−2. e The SEM images of Zn electrodeposition on Zn 
anodes in different electrolytes for 1 h at 5 mA  cm−2. f Surface morphologies of Zn anode after 50 cycles in different electrolytes under the con-
dition of 5 mA  cm−2 and 5 mAh  cm−2. g The voltage profiles of Zn-Zn symmetric cells using  ZnSO4 and  ZnSO4 + Gly electrolytes performed at 
the current density of 10 mA  cm−2 with the areal capacity of 8 mAh  cm−2 (rolled Zn foil as anode with the  DODZn of 68%)
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anode–electrolyte interface constructed by the assistance of 
amino and carboxyl groups in Gly.

When the current density is increased to 5 mA  cm−2, the 
symmetric cell with Gly also achieves an operation time of 
up to 800 h under the areal capacity of 5 mAh  cm−2, which 
is about 16 times of that in bare  ZnSO4 electrolyte (53 h, 
Fig. 3d). Interestingly, due to the regulated  Zn2+ flux enabled 
by carboxyl group, the addition of Ac-Gly realizes much 
longer cycle life and higher cycle stability than that of Gly-
NH2 in Zn–Zn symmetric cells, which is consistent with the 
results analyzed before. To evaluate the evolution of Zn dep-
osition process, the electrodeposition of  Zn2+ at 5 mA  cm−2 
on Zn anode was conducted and characterized by SEM. As 
shown in Fig. 3e, after 1 h of electrodeposition, the depos-
its are smooth and dense for  ZnSO4 + Gly/Ac-Gly, whereas 
loose and full of dendrites for bare  ZnSO4 and  ZnSO4 + Gly-
NH2. For longer time of electrodeposition (2 h, Fig. S16), 
unlike the highly dense and flat deposits in  ZnSO4 + Gly 
electrolyte, there are some large pores generated with the 
presence of Ac-Gly, which may cause the failure of batter-
ies during the subsequent cycling. The SEM images and 
XRD patterns of cycled Zn anodes in Figs. 3f and S17 also 
confirm the critical role of combined amino and carboxyl 
on stabilizing Zn anode. Even at a larger current density of 
10 mA  cm−2, Gly can ensure a superior operation stability of 
175 cycles (350 h) with no fluctuation of voltage (Fig. S18).

The depth of discharge of Zn anode  (DODZn) is one of 
the crucial criteria to evaluate the gravimetric energy den-
sity of ZIBs, referring to the fraction of Zn involved in the 
electrochemical redox reactions in Zn anode [71]. Since the 
commercial Zn foil (with a thickness slightly over 100 μm) 
used as anode at a low areal capacity is far too excessive, 
the utilization rate of Zn anode is extremely low  (DODZn < 
1%). In order to evaluate the stability of Zn anode at a higher 
 DODZn, the thickness of commercial Zn foil was reduced by 
repeated rolling with several times. As shown in Fig. S19, 
the texture of rolled Zn foil is in accordance with that of 
commercial Zn foil, with a thickness of about 20 μm.

Subsequently, the voltage profiles of symmetric cells 
assembled with rolled Zn foils at different  DODZn were 
depicted in Figs. S20 and 3 g. At a  DODZn of 43% (the areal 
capacity is 5 mAh  cm−2), a steady cycle lifespan for 400 h 
with less than 50 mV overpotential is achieved with the 
addition of Gly, whereas the cell with bare  ZnSO4 electrolyte 
presents short circuit within 100 h. Even at a higher  DODZn 
of 68% (the areal capacity is 8 mAh  cm−2), the Zn–Zn cell 

with Gly delivers a remarkable cycle stability up to 200 h. 
In contrast, large voltage polarization after 50 h is observed 
in the bare  ZnSO4 electrolyte and the cell finally becomes 
open-circuited at 83 h. These results are strong proofs for 
ensuring AZIBs achieve practical application target  (DODZn 
> 40%) with the synergistic effect of amino and carboxyl 
groups.

3.5  Validation of Stable Anode–Electrolyte Interface 
Enhanced Full Cells with  MnO2 Cathode

Accordingly, The Zn–MnO2 full cells were assembled 
with β-MnO2 cathode to further demonstrate the stable 
anode–electrolyte Interface enhanced AZIBs. The β-MnO2 
powder synthesized by hydrothermal method possesses fine 
needle-like morphology with an average length of 2 μm and 
excellent crystallinity (Fig. S21). Notably, 0.1 M  MnSO4 was 
added into both bare  ZnSO4 and  ZnSO4 + Gly electrolytes 
to alleviate the manganese dissolution during cycling [72]. 
Figure 4a shows the CV curves of Zn-MnO2 full cells with/
without Gly. The similar redox peaks of both two curves 
suggest that Gly has no impact on the reaction mechanism of 
 MnO2, which is supposed to be the  H+ and  Zn2+ co-insertion 
mechanism [73]. Obviously, the anodic peak shifts to lower 
voltage (Δ1 = 21 mV) and the cathodic peak shifts to higher 
voltage (Δ2 = 18 mV) in  ZnSO4 + Gly electrolyte, demon-
strating the diminished polarization and boosted reaction 
kinetics of  MnO2 cathode material. Under the synergistic 
“anchor-capture” effect, the Zn-MnO2 full cell delivers a 
superior rate capability to that with bare  ZnSO4 electrolyte 
(Fig. 4b). After cycling from 0.2 to 1.0 A  g−1 (5 cycles for 
each current density), the Zn-MnO2 cell with Gly remains 
a high specific capacity of 309.4 mAh  g−1 and preferable 
capacity retention of 82% when the current density returns 
to 0.2 A  g−1, much higher than that in bare  ZnSO4 electrolyte 
(269 mAh  g−1, 73% of the initial capacity).

The charge–discharge profiles presented in Figs. 4c, 
d unveil that both two voltage plateaus during discharge 
process show better repeatability with increasing current 
density, further revealing the positive role of Gly on reac-
tion reversibility of  MnO2 cathode. Finally, the long-term 
cycling performance of Zn-MnO2 full cells with/without 
Gly was tested. In Fig. 4e, it is clear to see that the cell 
maintains a flat and steady cycle performance for 200 
cycles with a higher discharge capacity of 167.2 mAh  g−1 
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at 0.5 A  g−1 in the presence of Gly, while a quick loss of 
capacity within 80 cycles is observed for the cell using 
bare  ZnSO4 electrolyte, which delivers an inferior dis-
charge capacity of 93 mAh  g−1 (31% of the initial capac-
ity) at 200th cycle. Furthermore, the specific capacity 
with bare  ZnSO4 electrolyte rapidly decays from 105.1 
to 16.7 mAh  g−1 within 200 cycles at a current density 
of 3 A  g−1 (Fig. S22a). In comparison, the cell with Gly 
additive delivers higher discharge capacity over the whole 
200 cycles. Even at a higher current density of 5 A  g−1, the 
Zn-MnO2 full cell assembled with Gly electrolyte exhibits 
a capacity retention of 75% (58.4 vs. 77.8 mAh  g−1) after 
200 cycles (Fig. S22b).

4  Conclusions

In this work, Gly was used as an electrolyte additive to 
stabilize the Zn anode interface. Benefited from the syner-
gistic “anchor-capture” effect of amino and carboxyl, Gly 
can steadily anchor on the Zn anode surface and capture 
the  Zn2+ at the interface, therefore inhibiting HER pro-
cess and the formation of by-products, which ensures uni-
formly deposition of  Zn2+. This strategy achieves a stable 
long cycle life over 2800 h (at the condition of 1 mA  cm−2 
and 1  mAh   cm−2) and high Zn utilization rate of 68% 
(areal capacity of 8 mAh  cm−2) in Zn–Zn symmetric cells. 

Fig. 4  a CV curves of Zn-MnO2 full cells using  ZnSO4 and  ZnSO4 + Gly electrolytes. b Rate capability of Zn-MnO2 full cells at various current 
densities from 0.2 to 1.0 A  g−1 in different electrolytes and c, d corresponding charge/discharge profiles. e Cycling performance of Zn-MnO2 full 
cells at the current density of 0.5 A  g−1 with/without Gly. 0.1 M  MnSO4 was added into each electrolyte
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Moreover, the reversibility of Zn stripping/plating process 
is significantly improved with a high average CE of 99.22%. 
Finally, the superior rate performance and long-term cycling 
stability of Zn–MnO2 full cells further verify the potential 
of Gly in practical application. This work would bring new 
insight into the selection and design of additives for promis-
ing AZIBs in large-scale energy storage.
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