Supporting Information for

Ultrafine Vacancy-Rich Nb₂O₅ Semiconductors Confined in Carbon Nanosheets Boost Dielectric Polarization for High-Attenuation Microwave Absorption

Zhe Su¹, Shan Yi¹, Wanyu Zhang¹, Xiaxi Xu¹, Yayun Zhang¹, Shenghu Zhou¹, Bo Niu^{1, *}, and Donghui Long^{1, 2, *}

¹ Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, School of Chemical Engineering, Shanghai 200237, P. R. China

² Key Laboratory for Specially Functional Materials and Related Technology of the Ministry of Education, East China University of Science and Technology, Shanghai 200237, P. R. China

*Corresponding authors. E-mail: <u>longdh@mail.ecust.edu.cn</u> (Donghui Long), <u>niubo@ecust.edu.cn</u> (Bo Niu)

ORCID: Donghui Long, orcid.org/0000-0002-3179-4822

Bo Niu, orcid.org/0000-0003-4126-6246

S1 Supplementary Calculation Section

According to the transmission line theory, the values of RL are calculated via the following equations [1]:

$$R_L(\mathrm{dB}) = 20\log \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right|$$
(S1)

$$Z_{in} = Z_0 \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh\left[j\frac{2\pi}{c}\sqrt{\mu_r\varepsilon_r}fd\right]$$
(S2)

where Z_0 is the impedance of free space, Z_{in} is the normalized input impedance of the absorber, ε_r ($\varepsilon_r = \varepsilon' - j\varepsilon''$) is the relative complex permittivity of the absorber, μ_r ($\mu_r = \mu' - j\mu''$) is the relative complex permeability, f represents the electromagnetic wave frequency, c is the velocity of the EM wave in free space, and d expresses the thickness of the absorber, respectively.

According to Debye dipolar relaxation (Cole-Cole model), the permittivity can be described as [S2]:

$$\varepsilon_r = \varepsilon' - j\varepsilon'' = \varepsilon_{\infty} + \frac{\varepsilon_s - \varepsilon_{\infty}}{1 + j2\pi f\tau}$$
 (S3)

where τ , ε_s , ε_∞ , and f stands for the polarization relaxation time, static permittivity constant, relative dielectric permittivity at the infinite frequency, and frequency, respectively. And the ε' and ε'' can be deduced as follows:

$$\varepsilon' = \varepsilon_{\infty} + \frac{\varepsilon_{S} - \varepsilon_{\infty}}{1 + (2\pi f \tau)^{2}}$$
(S4)

$$\varepsilon'' = \varepsilon_{\infty} + \frac{2\pi f \tau (\varepsilon_{S} - \varepsilon_{\infty})}{1 + (2\pi f \tau)^{2}}$$
(S5)

$$\left(\varepsilon' - \frac{\varepsilon_{\mathcal{S}} + \varepsilon_{\infty}}{2}\right)^2 + (\varepsilon'')^2 = \left(\frac{\varepsilon_{\mathcal{S}} - \varepsilon_{\infty}}{2}\right)^2 \tag{S6}$$

The attenuation constant α can be evaluated through the following equation [S3]:

$$\alpha = \frac{\sqrt{2}\pi f}{c} \times \sqrt{(\mu''\varepsilon'' - \mu'\varepsilon') + \sqrt{(\mu''\varepsilon'' - \mu'\varepsilon')^2 + (\mu'\varepsilon'' + \mu''\varepsilon')^2}}$$
(S7)

Delta values $(|\Delta|)$ can be deduced by the following equations [S2],

$$|\Delta| = |\sinh^2(Kfd) - M|$$
(S8)

where K and M can be determined by the relative complex permittivity and permeability via following equation,

$$K = \frac{4\pi\sqrt{\mu'\varepsilon'} \cdot \sin(\frac{\delta_e + \delta_m}{2})}{c \cdot \cos\delta_e \cdot \cos\delta_m}$$
(S9)
$$M = \frac{4\mu'\varepsilon' \cos\delta_e \cos\delta_m}{(\mu'\cos\delta_e - \varepsilon' \cos\delta_m)^2 + \left[\tan\left(\frac{\delta_m}{2} - \frac{\delta_e}{2}\right)\right]^2 (\mu'\cos\delta_e + \varepsilon' \cos\delta_m)^2}$$
(S10)

S2 Supplementary Figures and Tables

Fig. S1 The digital photographs of a Nb⁵⁺-gluconate precursor and b foamed *ov*-Nb₂O₅/CNS

Fig. S2. The scanning electron microscope (SEM) images of **a** Nb⁵⁺-gluconate precursor at 20 °C, **b** melted Nb⁵⁺-gluconate precursor at 100 °C, and **c** foamed intermediates with closed-cell structures at 200 °C

Fig. S3 Thermogravimetric analysis (TGA) curves of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *w*c-NbC/CNS composites under an air atmosphere

Fig. S4 SEM images of **a** *a*-Nb₂O₅/CNS, **b** *ov*-Nb₂O₅/CNS, **c** *c*-NbC/CNS, and **d** *w*c-NbC/CNS composites

Fig. S5 X-ray energy-dispersive spectroscopy (EDS) images of ov-Nb₂O₅/CNS

Fig. S6 a N₂ adsorption/desorption isotherms and **b** corresponding QSDFT pore-size distribution curves of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *w*c-NbC/CNS composites

The reduction of Nb₂O₅ by the carbon skeleton and the subsequent growth of NbC crystals results in the generation of a greater number of mesopores. This phenomenon is evidenced by the N₂ adsorption/desorption isotherms of c-NbC/CNS and *wc*-NbC/CNS composites, which display an enlarged hysteresis loop at higher relative pressures (P/P₀ of 0.4-0.99).

Nano-Micro Letters

Fig. S7 XPS survey spectrum of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *w*c-NbC/CNS composites

Fig. S8 Reflection loss contour maps and corresponding curves of **a**,**e** *a*-Nb₂O₅/CNS, **b**,**f** *ov*-Nb₂O₅/CNS, **c**,**g** *c*-NbC/CNS, and **d**,**h** *w*c-NbC/CNS composites

Fig. S9 Dielectric loss factor $(\tan \delta_{\epsilon})$ of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *wc*-NbC/CNS

Nano-Micro Letters

Fig. S10 2D delta ($|\Delta|$) value maps of *a*-Nb₂O₅/CNS

Fig. S11 Structures of a Nb₂O₅-carbon and b NbC-carbon configurations

Fig. S12 Structures of a perfect Nb₂O₅ and b oxygen-vacancy Nb₂O₅ configurations

Fig. S13 a Comprehensive and **b-e** individual Cole-Cole plots of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *wc*-NbC/CNS

Fig. S14 The digital photographs of ov-Nb₂O₅/CNS-cyanate plate with a size of 22.9 mm×10.2 mm×2 mm

Fig. S15 The detailed reflection losses curve of ov-Nb₂O₅/CNS-cyanate plate

Fig. S16 Thermal infrared images of *ov*-Nb₂O₅/CNS-cyanate plate on a heating platform (160 °C)

Table S1 Detailed pore parameters of *a*-Nb₂O₅/CNS, *ov*-Nb₂O₅/CNS, *c*-NbC/CNS, and *wc*-NbC/CNSNbC/CNS

Sample	$S_{BET} (m^2 g^{-1})$	S _{Micro} (m ² g ⁻¹)	V _{Total} (cm ³ g ⁻¹)	V _{Micro} (cm ³ g ⁻¹)
a-Nb ₂ O ₅ /CNS	224.2	201.9	0.117	0.098
ov-Nb ₂ O ₅ /CNS	262.3	216.4	0.147	0.095
c-NbC/CNS	314.9	215.5	0.227	0.096
wc-NbC/CNS	278.3	112.0	0.244	0.054

 Table S2 Comparison of minimum reflection loss versus thickness among ov-Nb₂O₅/CNS and other absorbers reported in the literature

Sample	Minimum reflection loss (dB)	Thickness (mm)	References
ov-Nb ₂ O ₅ /CNS	-80.8	2.76	This work
MoS ₂ /RGO	-50.9	2.3	[S4]
RGO/GDY	-58	2.7	[S5]
CNTs/CF	-44.46	3	[S6]
Graphene/Fe ₃ O ₄	-40.4	5	[S7]
BaFe _{11.6} Co _{0.4} O ₁₉ @Fe ₃ O ₄	-48.9	3.5	[S8]
DSNTs	-54.7	2.6	[S9]
MoC _{1-x} /C-TCN	-50.55	1.8	[S10]
NbS ₂	-43.85	2.5	[S11]
Cu-S-MOF	-52.8	1.69	[S12]
Fe@NCNs	-64.75	2.7	[S13]

Table S3 Comparison of minimum reflection loss *versus* effective absorption bandwidthamong ov-Nb2O5/CNS and other absorbers reported in the literature

Sample	Minimum reflection loss (dB)	Effective absorption bandwidth (GHz)	on References
ov-Nb ₂ O ₅ /CNS	-80.8	3.37	This work
$BaFe_{11.6}Co_{0.4}O_{19}@Fe_{3}O_{4}$	-48.9	2.5	[S8]
MnO@Co/C	-49.06	2.24	[S14]
MnO ₂ @NPC-800	-54.96	3.24	[S15]
Ni/NiO	-52.15	3.22	[S16]
CoO@N/C-NCO	-61.73	2.07	[S17]
MXene bowls	-53.8	4.2	[S18]
HE-Cr-1300	-30.7	3.6	[S19]
RGO/GDY	-58	4.3	[S5]

Supplementary References

- [S1] J. Cheng, H. Zhang, M. Ning, H. Raza, D. Zhang, G. Zheng, Q. Zheng, R. Che. Emerging materials and designs for low-and multi-band electromagnetic wave absorbers: the search for dielectric and magnetic synergy? Adv. Funct. Mater. 32(23), 2200123 (2022). <u>https://doi.org/10.1002/adfm.202200123</u>
- [S2] X. Zeng, X. Cheng, R. Yu, G. D. Stucky. Electromagnetic microwave absorption theory and recent achievements in microwave absorbers. Carbon 168, 606-623 (2020). <u>https://doi.org/10.1016/j.carbon.2020.07.028</u>
- [S3] M. S. Cao, X. X. Wang, M. Zhang, J. C. Shu, W. Q. Cao, H. J. Yang, X. Y. Fang, J. Yuan. Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29(25), 1807398 (2019). <u>https://doi.org/10.1002/adfm.201807398</u>
- [S4] Y. Wang, D. Chen, X. Yin, P. Xu, F. Wu, M. He. Hybrid of MoS₂ and reduced graphene oxide: a lightweight and broadband electromagnetic wave absorber. ACS Appl. Mater. Interfaces 7(47), 26226-26234 (2015). <u>https://doi.org/10.1021/acsami.5b08410</u>
- [S5] M. Ling, F. Wu, P. Liu, Q. Zhang, B. Zhang. Fabrication of graphdiyne/graphene composite microsphere with wrinkled surface via ultrasonic spray compounding and its microwave absorption properties. Small 19(7), 2205925 (2023). <u>https://doi.org/10.1002/smll.202205925</u>
- [S6] Y. Zhan, L. Xia, H. Yang, N. Zhou, G. Ma, T. Zhang, X. Huang, L. Xiong, C. Qin, W. Guangwu. Tunable electromagnetic wave absorbing properties of carbon nanotubes/carbon fiber composites synthesized directly and rapidly via an innovative induction heating technique. Carbon. 175, 101-111 (2021). https://doi.org/10.1016/j.carbon.2020.12.080
- [S7] T. Wang, Z. Liu, M. Lu, B. Wen, Q. Ouyang, Y. Chen, C. Zhu, P. Gao, C. Li, M. Cao. Graphene-Fe₃O₄ nanohybrids: synthesis and excellent electromagnetic absorption properties. J. Appl. Phys. **113**(2), 024314 (2013). <u>https://doi.org/10.1063/1.4774243</u>
- [S8] M. Yuan, B. Zhao, C. Yang, K. Pei, L. Wang, R. Zhang, W. You, X. Liu, X. Zhang, R. Che. Remarkable magnetic exchange coupling via constructing bi-magnetic interface for broadband lower-frequency microwave absorption. Adv. Funct. Mater. 32(33), 2203161 (2022). <u>https://doi.org/10.1002/adfm.202203161</u>
- [S9] P. Liu, Y. Wang, G. Zhang, Y. Huang, R. Zhang, X. Liu, X. Zhang, R. Che. Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction. Adv. Funct. Mater. 32(33), 2202588 (2022). <u>https://doi.org/10.1002/adfm.202202588</u>
- [S10] T. Zhao, Z. Jia, Y. Zhang, G. Wu. Multiphase molybdenum carbide doped carbon hollow sphere engineering: the superiority of unique double-shell structure in microwave absorption. Small 19(6), 2206323 (2023). https://doi.org/10.1002/smll.202206323
- [S11] H. Zhang, J. Cheng, H. Wang, Z. Huang, Q. Zheng, G. Zheng, D. Zhang, R. Che, M. Cao. Initiating VB-group laminated NbS₂ electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. **32**(6), 2108194 (2022). https://doi.org/10.1002/adfm.202108194

- [S12] P. Miao, N. Qu, W. Chen, T. Wang, W. Zhao, J. Kong. A two-dimensional semiconductive Cu-S metal-organic framework for broadband microwave absorption. Chem. Eng. J. 454, 140445 (2023). <u>https://doi.org/10.1016/j.cej.2022.140445</u>
- [S13] T. Gao, R. Zhao, Y. Li, Z. Zhu, C. Hu, L. Ji, J. Zhang, X. Zhang. Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). <u>https://doi.org/10.1002/adfm.202204370</u>
- [S14] M. Liu, R. Tian, H. Chen, S. Li, F. Huang, K. Peng, H. Zhang. One-dimensional chain-like MnO@Co/C composites for high-efficient electromagnetic wave absorbent. J. Magn. Magn. Mater. 499, 166289 (2020). https://doi.org/10.1016/j.jmmm.2019.166289
- [S15] H. Yang, Z. Shen, H. Peng, Z. Xiong, C. Liu, Y. Xie. 1D-3D mixed-dimensional MnO₂@nanoporous carbon composites derived from Mn-metal organic framework with full-band ultra-strong microwave absorption response. Chem. Eng. J. 417, 128087 (2021). <u>https://doi.org/10.1016/j.cej.2020.128087</u>
- [S16] Y. Shu, T. Zhao, X. Li, L. Yang, S. Cao. Enhanced electromagnetic wave absorption properties integrating diverse loss mechanism of 3D porous Ni/NiO microspheres. J. Alloy. Compd. 897, 163227 (2022). <u>https://doi.org/10.1016/j.jallcom.2021.163227</u>
- [S17] W. Wang, H. Zhang, Y. Zhao, J. Wang, H. Zhao, P. Li, J. Yun, Z. Deng, Z. Zhang, J. Tian. A novel MOF-drived self-decomposition strategy for CoO@N/C-Co/Ni-NiCo₂O₄ multi-heterostructure composite as high-performance electromagnetic wave absorbing materials. Chem. Eng. J. 426, 131667 (2021). <u>https://doi.org/10.1016/j.cej.2021.131667</u>
- [S18] Q. Du, Q. Men, R. Li, Y. Cheng, B. Zhao, R. Che. Electrostatic adsorption enables layer stacking thickness-dependent hollow Ti₃C₂T_x MXene bowls for superior electromagnetic wave absorption. Small 18(47), 2203609 (2022). <u>https://doi.org/10.1002/smll.202203609</u>
- [S19] B. Zhao, Y. Du, Z. Yan, L. Rao, G. Chen, M. Yuan, L. Yang, J. Zhang, R. Che. Structural defects in phase-regulated high-entropy oxides toward superior microwave absorption properties. Adv. Funct. Mater. 33(1), 2209924 (2023). <u>https://doi.org/10.1002/adfm.202209924</u>