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S1 Electromagnetic Parameters Calculation 

The coaxial-line method was used to test the S parameters (means S11, S12, S21 and S22). 

The corresponding electromagnetic parameters (ε′, ε″, µ′, µ″) could be figured out by software 

which is installed on the Agilent PNA. Reflection loss (RL) values were evaluated by their 

complex permittivity and permeability via following formula [S1]:  

𝑍𝑖𝑛 =  𝑍𝑜(𝜇𝑟/𝜀𝑟)
1

2tanh [𝑗(2𝜋𝑓𝑑(𝜇𝑟𝜀𝑟)
1

2 /𝑐)]                            (S1) 

RL(dB) = 20log |
Zin−Z0

Zin+Z0
|                                             (S2) 

where Z and Z0 are incidence impedance and impedance of air (377Ω) [S2], respectively, c 

and f are theoretical velocity and frequency of input electromagnetic waves, and d is thickness 

of electromagnetic wave absorber. The attenuation constant (α) could be assessed by 

transmission line theory, and the corresponding calculation formula is as follows: [S3, S4] 
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α =
√2𝜋𝑓

𝑐
√(𝜇′′𝜀′′ − 𝜇′𝜀′′) + √(𝜇′′𝜀′′ − 𝜇′𝜀′)2 + (𝜇′𝜀′′ − 𝜇′′𝜀′)2                  (S3) 

S2 Supplementary Tables and Figures 

Table S1 The comparison of the wave absorption performance for air@G-Fe/C nanospheres 

and SiO2@G-Fe/C counterpart at the scope of 2.0-18.0 GHz 

Materials 
RLmin 

(-dB) 

EAB 

(GHz) 

QBW 

(GHz) 

Thickness (a) 

(mm) 

Density 

(mg cm-3) 

T200 (This work) 55.97 6.2 14 2.0 83 

T210 (This work) 62.7 6.4 13.85 2.1 83 

SiO2@G-Fe/C (b) 22.4 6.2 13.8 2.0 2180 

Note:   
(a)The thickness in the peak RL value;  
(b)The solvothermal temperature of solid counterpart (SiO2@G-Fe/C) was 210 °C 

Table S2 The calculated concentration of Fe(OH)O, Fe3C, Fe3O4 and O2/Fe/Cu 

Calculated concentration T180 T190 T200 T210 

O1s，Fe(OH)O/% (a) 0.462 0.759 0.351 0.247 

Fe 2p，Fe3C/% (a) 0.43 0.45 0.54 0.58 

Fe 2p，Fe3O4/% (a) 0.2 0.39 0.23 0.28 

Fe 2p，O2/Fe/Cu/% (a) 0.125 0.224 0.244 0.285 

Note:  
(a) Concentration was calculated from X-ray photoelectron spectroscopy (XPS) 

Table S3 The surface area and pore size analyzer analysis of air@G-Fe/C nanoballs 

Samples T180 T190 T200 T210 

BET surface （m2
g-1） 281.74 229 156.52 83.054 

Mean pore diameter（nm） 6.35 6.91 5.75 5.05 

Dpeak (nm) 1. 4 1.9 2.0 1.8 

Table S4 The comparison of the wave absorption performance of different gradient 

distributions/multi-layer materials at the scope of 2.0-18.0 GHz 

Structure and Preparation 

method 

RLmin 

(-dB) 

EAB 

(GHz) 

QBW 

(GHz) 

Thickness (a) 

(mm) 

Precision 

(nm) 

Density 

(mg cm-3) 

T200 (This work) 55.97 6.2 14 2.0 ~20 83 

T210 (This work) 62.7 6.4 13.85 2.1 ~20 83 

FeSiAl@Al2O3@SiO2 

Core–shell (Plasma)  [S5] 
46.29 7.33 15 2.5 50 ~3175(b) 

ZnO-Al2O3-CNF fiber 

(ALD)  [S6] 
58.5 6 12.8 1.8 15 ~1600(b) 

CNTs/SiO2 composites 9.5 3.4 3.4 5 800 ~1558(b) 
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(Hot-pressed sintering) [S7] 

MXene/polymer films 

(Tape casting process) 

[S8] 

26.1 1.44 4.2 7 138 1000(b) 

RGO/CNC/CNF/M-NPs 

hierarchical aerogel 

(Hydrothermal-Freeze-

drying-CVD) [S9] 

71.5 4.5 14 2.95 500-3000 — (c) 

TiO2@Co/C@Co/Ni 

multilayered microtubes. 

Electrospinning  [S10] 

53.99 6.0 ~14 2.0 ~100 — (c) 

Hollow Fe@Carbon 

Templates method  [S11] 

dual-shells 

54.4 8.1 — (c) 4.5 — (c) — (c) 

Gradient Hierarchical 

Porous (lotus leaf)  [S12] 
50.1 5.8 ~13 2.4 300-5000 — (c) 

Note: 
(a)The thickness in the peak RL value 
(b)The dates calculated corresponding to the structure and component 
(c)data are not available  

 
Fig. S1 (A) SEM images of colloidal SiO2 nanoballs, (B) and their statistics results of particle 

size distribution 
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Fig. S2 SEM images of SiO2@G-Fe3O4/C precursor obtained from solvothermal temperature 

of (A, B)180 ℃, (C, D)190 ℃and (E, F)200 ℃; The size distributions of SiO2@G-Fe3O4/C 

precursor calculated from (G)180 ℃, (H)190 ℃and (I)200 ℃, respectively  

 

 

Fig. S3 TEM of SiO2@G-Fe3O4/C precursor prepared by solvothermal temperature of (A, 

E)180 ℃, (B, F)190 ℃, (C, G)200 ℃and (D, H)210 ℃. The corresponding air@G-Fe/C 

nanoballs products of (I)T180, (J)T190, (K)T200 and (L)T210 
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Fig. S4 Schematic of the inorganic-organic competitive coating strategy in solvothermal 

process. (A) The ferrocene is gradually hydrolyzed into Fe ions and cyclopentadiene, and then 

Fe ions are further hydrolyzed into hydrated Fe3O4 (inorganic nucleation), and cyclopentadiene 

are oxidized and polymerized into amorphous carbonaceous species (organic nucleation), (B) 

Schematic diagram for nucleation rate between iron oxides and amorphous carbonaceous 

species and model diagram of competitive coating process by solvothermal reaction 

temperature of 180, 190, and 200 °C 

 

 

Fig. S5 (A) XRD and (B) FT-IR spectroscopy of SiO2@G-Fe3O4/C precursor with different 

solvent thermal temperature treatment 
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Fig. S6 (A) HRTEM image and (B) selective area electronic diffraction (SAED) pattern of 

SiO2@G-Fe3O4/C precursor 

 

Fig. S7 (A) SEM and (B-F) the corresponding EDS mapping of SiO2@G-Fe3O4/C precursor 

prepared by FIB 

 

Fig. S8 (A) TEM and (B) the magnification images of graded distributed Fe/C nanospheres  
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Fig. S9 (A-D) HRTEM images of graded distributed Fe/C nanospheres, and (E) the 

corresponding size distributions of Fe nanoparticles calculated from (A-D) 

 

Fig. S10 HAADF image and elemental mapping images of T210 
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Fig. S11 (A) HAADF image and (B) the corresponding EDS line scan of air@G-Fe/C-200 

nanoballs 

 

Fig. S12 (A) wide-scan survey of XPS spectra and (B) high-resolution XPS signals of C 1s 

 

Fig. S13 3D reflection loss (RL) values of (A) T180, (B) T190, (C) T200, and (D) T210 with 

different thickness and frequency 
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Fig. S14 The dependence of RL values on the thickness of (A) T180, (B) T190, (C) T200, 

and (D) T210 of hollow air@G-Fe/C-200 nanoballs. (E) The curves of integrated QBW 

 

 

Fig. S15 The absolute value of 𝑇𝑎𝑛δε/𝑇𝑎𝑛δμcurves in the range of 2 – 18 GHz, Insert the 

partial enlargement of 𝑇𝑎𝑛δε/𝑇𝑎𝑛δμcurves 
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Fig. S16 (A)The eddy current values (𝐶0 = 𝜇′′(𝜇′)−2𝑓−1), (B)Attenuation constant, 

(C)Alternative conductivity, and the corresponding average conductivity (ac, D) of different 

samples 

 

Fig. S17 The impedance matching degree |Zin/Z0| values of (A) T180, (B) T190, (C) T200, 

and (D) T210 
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Fig. S18 (A) The |Zin/Z0| values with thicknesses of 1 – 5 mm, and (B) the values between 

0.8-1.2 in the range of 2-18 GHz 

 

Fig. S19 The reflection loss (RL) values of (A) T600, (B) T700, (C) T800, and (D) T900 with 

different thickness and frequency 
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Nano-Micro Letters 
 

S12/S15 

 
Fig. S20 Compositional characterization of air@G-Fe/C nanospheres for different annealing 

temperature. (A) XRD patterns, (B) TGA curves, and (C) the corresponding calculated content 

of iron, (D) Magnetic hysteresis loops at 298 K, and (E) Raman spectrum 

 

 

Fig. S21 Compositional characterization of air@G-Fe/C nanospheres by XPS. (A) wide-scan 

survey of XPS spectra, (B) high-resolution XPS signals of C 1s, (C) O 1s, (D) Fe 2p, and (E) the 

corresponding calculated concentration of Fe3C, Fe3O4 and Fe 
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Fig. S22 (A) µ′, and (B) µ′′parts of complex permeability, (C) Magnetic loss tangent 

(tan𝛿𝜇 =
𝜇′′

𝜇′ ), (D) the eddy current values (𝐶0 = 𝜇′′(𝜇′)−2𝑓−1) 

 

 

Fig. S23 The |Zin/Z0| values with thicknesses in the range of 1–5 mm for (A) T600, (B) T700, 

(C) T800, and (D) T900, (E) The total frequency broad of |Zin/Z0| values in the range of 0.8-

1.2 with different thickness 
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Fig. S24 (A) Alternative conductivity (ac), and (B) the corresponding average conductivity 

 

Fig. S25 (A, B) Nyquist plots, and (B, D) the corresponding conductivity calculated from 

Nyquist plots of different air@G-Fe/C samples 

 

Fig. S26 Schematic of wave absorption mechanism of air@G-Fe/C nanospheres 
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