Supporting Information for

Hollow Gradient-Structured Iron Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption

Cao Wu^{1,†}, Jing Wang^{2, 3,†}, Xiaohang Zhang², Lixing Kang^{1, 4,} *, Xun Cao⁵, Yongyi Zhang^{1, 3,} ^{4, *}, Yutao Niu^{1, 3, 4}, Yingying Yu^{1, 9}, Huili Fu^{1, 3, 4}, Zongjie Shen¹, Kunjie Wu^{1, 3}, Zhenzhong Yong^{1, 3, 4}, Jingyun Zou⁶, Bin Wang³, Zhou Chen⁷, Zhengpeng Yang⁸, and Qingwen Li^{1, 4, *}

¹ Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu, P. R. China

²School of Science, Nanchang Institute of Technology, Nanchang 330099, Jiangxi, P. R. China

³Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang 330200, Jiangxi, P. R. China

⁴School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China

⁵School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore

⁶Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, P. R. China

⁷School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing 211800, P. R. China

⁸Henan Key Laboratory of Materials on Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, P. R. China

⁹College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China

†Cao Wu and Jing Wang contributed equally to this work.

*Corresponding authors. E-mail: lxkang2013@sinano.ac.cn (L. Kang); yyzhang2011@sinano.ac.cn (Y. Zhang); qwli2007@sinano.ac.cn (Q. Li)

S1 Electromagnetic Parameters Calculation

The coaxial-line method was used to test the S parameters (means S11, S12, S21 and S22). The corresponding electromagnetic parameters (ε' , ε'' , μ' , μ'') could be figured out by software which is installed on the Agilent PNA. Reflection loss (RL) values were evaluated by their complex permittivity and permeability via following formula [S1]:

$$
Z_{in} = Z_o(\mu_r/\varepsilon_r)^{\frac{1}{2}} \tanh\left[j(2\pi f d(\mu_r \varepsilon_r)^{\frac{1}{2}}/c)\right]
$$
(S1)
PI(dR) = 20log₁ $\frac{Z_{in} - Z_o}{2}$ (S2)

$$
RL(dB) = 20\log |\frac{z_{\text{in}} - z_0}{z_{\text{in}} + z_0}|
$$
 (S2)

where Z and Z_0 are incidence impedance and impedance of air (377 Ω) [S2], respectively, *c* and *f* are theoretical velocity and frequency of input electromagnetic waves, and *d* is thickness of electromagnetic wave absorber. The attenuation constant (α) could be assessed by transmission line theory, and the corresponding calculation formula is as follows: [S3, S4]

$$
\alpha = \frac{\sqrt{2}\pi f}{c} \sqrt{(\mu''\varepsilon'' - \mu'\varepsilon'') + \sqrt{(\mu''\varepsilon'' - \mu'\varepsilon')^2 + (\mu'\varepsilon'' - \mu''\varepsilon')^2}}
$$
(S3)

S2 Supplementary Tables and Figures

Table S1 The comparison of the wave absorption performance for air@G-Fe/C nanospheres and $SiO₂@G-Fe/C$ counterpart at the scope of 2.0-18.0 GHz

Materials	RL_{min} $(-dB)$	EAB (GHz)	OBW (GHz)	Thickness ^(a) (mm)	Density $(mg cm-3)$
T200 (This work)	55.97	6.2	14	2.0	83
T ₂₁₀ (This work)	62.7	6.4	13.85	2.1	83
$SiO2@G-Fe/C(b)$	22.4	6.2	13.8	2.0	2180

Note:

(a)The thickness in the peak RL value;

^(b)The solvothermal temperature of solid counterpart (SiO₂@G-Fe/C) was 210 °C

Table S2 The calculated concentration of Fe(OH)O, Fe₃C, Fe₃O₄ and O₂/Fe/Cu

Calculated concentration	T180	T190	T200	T210
$O1s$, Fe(OH)O/% (a)	0.462	0.759	0.351	0.247
Fe 2p, Fe ₃ C/% (a)	0.43	0.45	0.54	0.58
Fe 2p \cdot Fe ₃ O ₄ /% ^(a)	0.2	0.39	0.23	0.28
Fe 2p \cdot O ₂ /Fe/Cu/% ^(a)	0.125	0.224	0.244	0.285

Note:

(a) Concentration was calculated from X-ray photoelectron spectroscopy (XPS)

Table S3 The surface area and pore size analyzer analysis of air@G-Fe/C nanoballs

Samples	T180	T190	T200	T210
BET surface $(m^2 \cdot g^{-1})$	281.74	229	156.52	83.054
Mean pore diameter (nm)	6.35	6.91	5.75	5.05
Dpeak (nm)	1.4	1.9	2.0	1.8

Note:

(a)The thickness in the peak RL value

(b)The dates calculated corresponding to the structure and component

(c)data are not available

Fig. S1 (A) SEM images of colloidal SiO₂ nanoballs, (B) and their statistics results of particle size distribution

Fig. S2 SEM images of SiO₂@G-Fe₃O₄/C precursor obtained from solvothermal temperature of (**A, B**)180 ℃, (**C, D**)190 ℃and (**E, F**)200 ℃; The size distributions of SiO2@G-Fe3O4/C precursor calculated from (**G**)180 °C, (**H**)190 °Cand (I)200 °C, respectively

Fig. S3 TEM of SiO2@G-Fe3O4/C precursor prepared by solvothermal temperature of (**A, E**)180 ℃, (**B, F**)190 ℃, (**C, G**)200 ℃and (**D, H**)210 ℃. The corresponding air@G-Fe/C nanoballs products of (**I**)T180, (**J**)T190, (**K**)T200 and (**L**)T210

Fig. S4 Schematic of the inorganic-organic competitive coating strategy in solvothermal process. (**A**) The ferrocene is gradually hydrolyzed into Fe ions and cyclopentadiene, and then Fe ions are further hydrolyzed into hydrated Fe₃O₄ (inorganic nucleation), and cyclopentadiene are oxidized and polymerized into amorphous carbonaceous species (organic nucleation), (**B**) Schematic diagram for nucleation rate between iron oxides and amorphous carbonaceous species and model diagram of competitive coating process by solvothermal reaction temperature of 180, 190, and 200 °C

Fig. S5 (A) XRD and (B) FT-IR spectroscopy of SiO₂@G-Fe₃O₄/C precursor with different solvent thermal temperature treatment

Fig. S6 (**A**) HRTEM image and (**B**) selective area electronic diffraction (SAED) pattern of SiO2@G-Fe3O4/C precursor

Fig. S7 (**A**) SEM and (**B-F**) the corresponding EDS mapping of SiO2@G-Fe3O4/C precursor prepared by FIB

Fig. S8 (**A**) TEM and (**B**) the magnification images of graded distributed Fe/C nanospheres

Fig. S9 (**A-D**) HRTEM images of graded distributed Fe/C nanospheres, and (**E**) the corresponding size distributions of Fe nanoparticles calculated from (**A-D**)

Fig. S10 HAADF image and elemental mapping images of T210

Fig. S11 (**A**) HAADF image and (**B**) the corresponding EDS line scan of air@G-Fe/C-200 nanoballs

Fig. S12 (**A**) wide-scan survey of XPS spectra and (**B**) high-resolution XPS signals of C 1s

Fig. S13 3D reflection loss (RL) values of (**A**) T180, (**B**) T190, (**C**) T200, and (**D**) T210 with different thickness and frequency

Fig. S14 The dependence of RL values on the thickness of (**A**) T180, (**B**) T190, (**C**) T200, and (**D**) T210 of hollow air@G-Fe/C-200 nanoballs. (**E**) The curves of integrated QBW

Fig. S15 The absolute value of $Tan\delta_{\epsilon}/Tan\delta_{\mu}$ curves in the range of 2 – 18 GHz, Insert the partial enlargement of $Tan \delta_{\epsilon}/Tan \delta_{\mu}$ curves

Fig. S16 (A)The eddy current values $(C_0 = \mu''(\mu')^{-2}f^{-1})$, (**B**)Attenuation constant, (C)Alternative conductivity, and the corresponding average conductivity (σ ac, **D**) of different samples

Fig. S17 The impedance matching degree |Zin/Z0| values of (**A**) T180, (**B**) T190, (**C**) T200, and (**D**) T210

Fig. S18 (A) The $|Z_{in}/Z_0|$ values with thicknesses of $1 - 5$ mm, and (**B**) the values between 0.8-1.2 in the range of 2-18 GHz

Fig. S19 The reflection loss (RL) values of (**A**) T600, (**B**) T700, (**C**) T800, and (**D**) T900 with different thickness and frequency

Fig. S20 Compositional characterization of air@G-Fe/C nanospheres for different annealing temperature. (**A**) XRD patterns, (**B**) TGA curves, and (**C**) the corresponding calculated content of iron, (**D**) Magnetic hysteresis loops at 298 K, and (**E**) Raman spectrum

Fig. S21 Compositional characterization of air@G-Fe/C nanospheres by XPS. (**A**) wide-scan survey of XPS spectra, (**B**) high-resolution XPS signals of C 1s, (**C**) O 1s, (**D**) Fe 2p, and (**E**) the corresponding calculated concentration of Fe3C, Fe3O⁴ and Fe

Fig. S22 (**A**) µ′, and (**B**) µ′′parts of complex permeability, (**C**) Magnetic loss tangent $(\tan \delta_{\mu} = \frac{\mu^{\prime \prime}}{\mu^{\prime}})$ $\frac{d^{n}}{\mu^{n}}$, (**D**) the eddy current values $(C_0 = \mu''(\mu')^{-2}f^{-1})$

Fig. S23 The $|Z_{in}/Z_0|$ values with thicknesses in the range of 1–5 mm for (A) T600, (**B**) T700, (**C**) T800, and (**D**) T900, (**E**) The total frequency broad of $|Z_{in}/Z_0|$ values in the range of 0.8-1.2 with different thickness

Fig. S24 (A) Alternative conductivity (σ_{ac}), and (**B**) the corresponding average conductivity

Fig. S25 (**A, B**) Nyquist plots, and (**B, D**) the corresponding conductivity calculated from Nyquist plots of different air@G-Fe/C samples

Fig. S26 Schematic of wave absorption mechanism of air@G-Fe/C nanospheres

Supplementary References

- [S1] X. Zhou, Z. Jia, A. Feng, X. Wang, J. Liu et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance. Carbon **152**, 827-836 (2019).<https://doi.org/10.1016/j.carbon.2019.06.080>
- [S2] H. Lv, Z. Yang, H. Xu, L. Wang, R. Wu, An electrical switch‐driven flexible electromagnetic absorber. Adv. Funct. Mater. **30**(4), 1907251 (2020). <https://doi.org/10.1002/adfm.201907251>
- [S3] S. Dai, Y. Cheng, B. Quan, X. Liang, W. Liu et al., Porous-carbon-based Mo2C nanocomposites as excellent microwave absorber: a new exploration. Nanoscale **10**(15), 6945-6953 (2018).<https://doi.org/10.1039/C8NR01244J>
- [S4] Y. Wang, X. Han, P. Xu, D. Liu, L. Cui et al., Synthesis of pomegranate-like Mo₂C@C nanospheres for highly efficient microwave absorption. Chem. Eng. J. **372**, 312-320 (2019).<https://doi.org/10.1016/j.cej.2019.04.153>
- [S5] Y. Guo, X. Jian, L. Zhang, C. Mu, L. Yin et al., Plasma-induced FeSiAl $@$ Al₂O₃ $@$ SiO₂ core–shell structure for exceptional microwave absorption and anti-oxidation at high temperature. Chem. Eng. J. **384**, 123371 (2020). <https://doi.org/10.1016/j.cej.2019.123371>
- [S6] S. Zhao, L. Yan, X. Tian, Y. Liu, C. Chen et al., Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Res. **11**(1), 530-541 (2018). <https://doi.org/10.1007/s12274-017-1664-6>
- [S7] M. Chen, Y. Zhu, Y. Pan, H. Kou, H. Xu et al., Gradient multilayer structural design of CNTs/SiO² composites for improving microwave absorbing properties. Mater. Des. **32**(5), 3013-3016 (2011).<https://doi.org/10.1016/j.matdes.2010.12.043>
- [S8] B. Ji, S. Fan, S. Kou, X. Xia, J. Deng et al., Microwave absorption properties of multilayer impedance gradient absorber consisting of $Ti₃C₂T_x$ MXene/polymer films. Carbon **181**, 130-142 (2021).<https://doi.org/10.1016/j.carbon.2021.05.018>
- [S9] Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. **13**, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- [S10]C. Jin, Z. Wu, R. Zhang, X. Qian et al., 1D electromagnetic-gradient hierarchical carbon microtube via coaxial electrospinning design for enhanced microwave absorption. ACS Appl. Mater. Interfaces **13**(13), 15939-15949 (2021). <https://doi.org/10.1021/acsami.1c03129>
- [S11]X.P. Li, Z. Deng, Y. Li, H.B. Zhang, S. Zhao et al., Controllable synthesis of hollow microspheres with Fe@ carbon dual-shells for broad bandwidth microwave absorption. Carbon **147**, 172-181 (2019).<https://doi.org/10.1016/j.carbon.2019.02.073>
- [S12]F. Pan, Z. Liu, B. Deng, Y. Dong, X. Zhu et al., Lotus leaf-derived gradient hierarchical porous C/MoS² morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. **13**, 43 (2021). <https://doi.org/10.1007/s40820-020-00568-1>