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HIGHLIGHTS

• The recent advances in  CxNy‑based materials including the optimized g‑C3N4, g‑C3N4‑based composites, and other novel  CxNy materi‑
als are summarized.

• The applications of  CxNy‑based materials in Li–S batteries are systematically discussed with a focus on the structure–activity relation‑
ship.

• The perspectives on the rational design of advanced  CxNy‑based materials for high‑performance Li–S batteries are provided.

ABSTRACT Lithium–sulfur (Li–S) batteries are promising candidates for next‑gen‑
eration energy storage systems owing to their high energy density and low cost. How‑
ever, critical challenges including severe shuttling of lithium polysulfides (LiPSs) 
and sluggish redox kinetics limit the practical application of Li–S batteries. Car‑
bon nitrides  (CxNy), represented by graphitic carbon nitride (g‑C3N4), provide new 
opportunities for overcoming these challenges. With a graphene‑like structure and 
high pyridinic‑N content, g‑C3N4 can effectively immobilize LiPSs and enhance 
the redox kinetics of S species. In addition, its structure and properties including 
electronic conductivity and catalytic activity can be regulated by simple methods 
that facilitate its application in Li–S batteries. Here, the recent progress of applying 
 CxNy‑based materials including the optimized g‑C3N4, g‑C3N4‑based composites, 
and other novel  CxNy materials is systematically reviewed in Li–S batteries, with a 
focus on the structure–activity relationship. The limitations of existing  CxNy‑based 
materials are identified, and the perspectives on the rational design of advanced 
 CxNy‑based materials are provided for high‑performance Li–S batteries.
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1 Introduction

The continuously increasing demands for sustainable energy 
and severe environmental crisis have boosted the develop‑
ment of various advanced energy technologies around the 
world, with the purpose of efficient utilization and storage of 
renewable energy [1, 2]. High energy density and economi‑
cal rechargeable batteries are the key components of these 
advanced energy technologies [3–5]. Operated based on 
lithium ion (Li‑ion) intercalation chemistry, Li‑ion batteries 
have enjoyed great success in powering commercial portable 
electronics and electric vehicles [6]. However, the limited 
capacity of electrode materials and their high cost hinder 
the penetration of traditional Li‑ion batteries in large‑scale 
emerging fields. Therefore, it is increasingly important to 
develop electrochemical energy storage devices with higher 
energy density and lower cost [7–9].

Lithium–sulfur (Li–S) batteries are considered one of 
the most promising energy storage systems beyond Li‑
ion batteries due to their high energy density and low cost 
[10]. Typically, Li–S batteries consist of elemental sulfur 
 (S8) cathodes and Li anodes, as shown in Fig. 1a. Based 
on the multi‑electron conversion mechanism between  S8 
and Li metals  (S8 + 16Li ↔  8Li2S) [11, 12], Li–S batteries 
deliver high theoretical specific capacity of 1675 mAh  g−1 
and specific energy of 2,600 Wh  kg−1, which is 2–5 times 
that of Li‑ion batteries [13]. The widely accepted reaction 
mechanism of Li–S batteries is shown in Fig. 1c. During 
the discharge process, solid  S8 is firstly reduced to solu‑
ble lithium polysulfides (LiPSs, usually denoted as  Li2Sn, 
2 < n ≤ 8) in a first discharge plateau at around 2.35 V and 
then continues to be reduced to solid lithium sulfide  (Li2S) 
in a second discharge plateau at around 2.1 V. Due to the 

involved solid–solid conversion between  Li2S2 and  Li2S, the 
corresponding reaction kinetics performs sluggish. During 
the subsequent charge process,  Li2S is reconverted to LiPSs 
and finally to  S8, forming a reversible cycle [14].

Due to inherent properties of the Li–S reaction, the 
commercial applications of Li–S batteries are limited by 
three main obstacles (Fig. 1a). (i) The insulating and insol‑
uble nature of  S8 and  Li2S limits their utilization efficiency 
and redox kinetics [15–17], especially for the deposition 
of solid  Li2S, which is considered to be the rate‑limiting 
step of the whole discharge process due to the sluggish 
kinetics in the solid–solid conversion from  Li2S2 to  Li2S, 
resulting in low capacity and low rate performance of Li–S 
batteries; (ii) long‑chain LiPSs intermediates are soluble 
in organic electrolyte, which leads to their shuttling to the 
Li anode and thus low coulombic efficiency, high self‑
discharge, and passivation of the Li anode surface with 
the continuous reaction with LiPSs [13, 18]; (iii) due to 
the density difference between  S8 and  Li2S, the cathode 
encounters a large volume change (≈80%) during the dis‑
charge and charge process [19, 20], leading to irreversible 
damage of the electrode structure and rapid capacity fad‑
ing; (iv) due to the uneven Li deposition, the generated Li 
dendrites may pierce the separator, resulting in internal 
short circuiting and even explosion [13].

S composite cathodes [21–24] and functional interlay‑
ers/separators [25–28] based on advanced materials could 
mitigate these obstacles and achieve high‑performance 
Li–S batteries. Adsorption by a large surface area and 
abundant active sites could effectively immobilize LiPSs, 
and high catalytic activity could enhance the reaction kinet‑
ics [29–31]. Moreover, highly conductive, interconnected, 
and flexible structure could promote the utilization of the 
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Fig. 1  Schematic illustration of a the challenging issues in common Li–S batteries and b the improved performance for modified Li–S batteries 
with the introduced  CxNy additive in different components. c Typical discharge/charge voltage profiles of Li–S batteries
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insulating active materials  (S8 and  Li2S) and mitigate the 
impact of volume expansion [32–34]. Carbon nitride  (CxNy) 
is a kind of ordered semiconductor material with strong 
absorption capability, high catalytic activity, excellent sta‑
bility, low cost, and environment friendliness, rendering it 
a promising additive for Li–S batteries [35, 36]. As shown 
in Fig. 1b, represented by graphitic carbon nitride (g‑C3N4), 
its high N content provides abundant active sites for LiPSs’ 
immobilization. Moreover, the heptazine units of g‑C3N4 
contain high levels of pyridinic N, which can provide lone 
pair electrons to promote electrochemical reactions [37, 38]. 
Besides, the high N content of g‑C3N4 endows it with good 
capability to homogenize Li ion deposition with the strong 
affinity between Li and N atoms, and the stable g‑C3N4 coat‑
ing on Li anode can physically inhibit the growth of Li den‑
drites and guarantee the fast transport for Li ions [39, 40]. 
Although the original g‑C3N4 bulk shows limited electronic 
conductivity and surface area [34, 41, 42], these properties 
can be improved by regulating its structure and properties 
with simple methods. With various precursors and synthe‑
sis conditions, g‑C3N4 could be synthesized with different 
C/N ratios, surface area, porosity, nanostructure shapes, and 
morphologies [43–46].

In this review, we present recent advances in 
 CxNy‑based materials applied in Li–S batteries, including 
the optimized g‑C3N4, g‑C3N4‑based composite materials, 
and other novel  CxNy materials. We systematically sum‑
marized their synthetic methods, structures, properties, 
and effects on Li–S batteries, with a focus on the struc‑
ture–activity relationship. Based on an extensive analy‑
sis of literature, we identified the limitations of existing 
 CxNy‑based materials and provided our perspective on 
the rational design of advanced  CxNy‑based materials for 
high‑performance Li–S batteries.

2  Basics of Representative Carbon Nitride: 
g‑C3N4

CxNy material, represented by g‑C3N4, was firstly reported 
in the nineteenth century [37]. Due to its unique structure 
and properties, g‑C3N4 has been widely applied in various 
fields ever since, such as photocatalysis [47], carbon diox‑
ide capture [48, 49], and energy storage, for example, Li–S 
batteries [35].

2.1  Structures and Properties

Common g‑C3N4 exhibits a graphene‑like nanosheet struc‑
ture. In the lamellas, tri‑s‑triazine rings as basic units [37] 
are composed of sp2 hybrid conjugated C and N atoms and 
further connected by hydrogen bonds between NH and/or 
 NH2 groups on ring edges [50, 51], as shown in Fig. 2a‑b. 
The connection of multiple basic units constructs angstrom 
pore structure in the lamellas with a diameter of around 3 Å, 
which is larger than that of  Li+ and smaller than that of 
soluble LiPSs [52], leading to the restricted "shuttle effect". 
Between these lamellas, there exists a weak van der Waals 
force (Fig. 2c) [53], which provides a stronger interlamel‑
lar binding ability and smaller stacking distance (0.319 nm) 
compared to that of graphite (0.335 nm) [54].

g‑C3N4 has high stability and flexibility, which attribute to 
its intra‑ and inter‑lamella structure. The aromatic heterocyclic 
ring in the lamella of g‑C3N4 ensures its high thermal stability. 
g‑C3N4 can withstand a high temperature of around 600 °C in 
the air without obvious degradation observed [51]. The strong 
inter‑lamellar binding ensures its high chemical stability. g‑C3N4 
is insoluble in most acid/alkali water solutions or organic solu‑
tions [55, 56]. Moreover, g‑C3N4 shows high flexibility, which is 
conducive to alleviating the volume change of electrodes during 
the charge and discharge process [57].
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Fig. 2  a Tri‑s‑triazine unit of g‑C3N4. b Plane repeats and c π–π stacking structure of g‑C3N4 [37]. Copyright 2021, Wiley–VCH
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More importantly, g‑C3N4 performs strong LiPSs adsorption 
capability due to its high N content (60.87 wt%, in theory) and 
various types of N‑site, including bridged N, graphitic N, and 
pyridinic N. The strong interaction between N and Li [35, 36] 
effectively immobilizes LiPSs and further accelerates the redox 
reaction of S species, improving the rate capability of Li–S bat‑
teries [58]. The adsorption performances of pristine carbon, 
N‑doped carbon, and g‑C3N4 to LiPSs were compared by the 
first‑principles calculation [35]. Figure 3a‑c displays the 2D 
deformation charge distribution of various substrates (red for 
receiving electron and blue for giving electron) and the most 
stable adsorption configurations of  Li2S2 molecules on their 
surfaces. The pristine carbon shows evenly distributed positive 

charges on each C site and adsorbs  Li2S2 without special binding 
bonds, while both N‑doped carbon and g‑C3N4 perform negative 
charges on the N sites and adsorb  Li2S2 by forming a Li‑N bond 
with the average distance between g‑C3N4 and  Li2S2 as short as 
2.06 Å. In addition, as shown in Fig. 3d, g‑C3N4 shows higher 
binding energy for  Li2S2, confirming that g‑C3N4 can provide 
rich active sites (pyridinic N) for the adsorption of LiPSs with 
high intrinsic polarity.

Besides, the high N content of g‑C3N4 endows it with high 
affinity with Li ions, which can ensure the uniform deposi‑
tion of Li ions [40]. Moreover, the shear modulus of the 
g‑C3N4 layer is about 21.6 Gpa, which is higher than that of 
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Li metal (~ 4.9 Gpa), thus physically inhibiting the growth 
of Li dendrites [39].

2.2  Synthesis Methods and Applications in Li–S 
Batteries

The synthesis methods of g‑C3N4 reported mainly include 
the direct condensation method and template method. By 
heating the nitrogen‑containing precursor such as mela‑
mine at a certain temperature, direct condensation is a sim‑
ple and commonly applied method to fabricate 2D g‑C3N4 
nanosheet. With this method, the properties of g‑C3N4 such 
as specific surface area could be easily regulated by chang‑
ing the types of precursor and heating temperature. Different 
precursors lead to different reaction processes and different 
by‑products, which affect the structure of g‑C3N4. For exam‑
ple, the evolution of  NH3 gas during the calcination of mela‑
mine (g‑C3N4 precursor) could lead to a g‑C3N4 product with 
a porous structure [59]. Heating temperature mainly affects 
the reaction rate. An excessive temperature would lead to the 
collapse of g‑C3N4 structure. Li et al. prepared g‑C3N4 using 
cyanuric acid (TTCA) as the precursor [60]. The g‑C3N4 
product shows a porous structure with high specific surface 
area and high N doping content (up to 56.87 wt%), which 
facilitate the fast ion transfer and LiPSs immobilization. 
Furthermore, Yao et al. systematically studied the effect of 
precursors [43] and pyrolysis temperature [61] on the prop‑
erties of g‑C3N4. Among the g‑C3N4 materials prepared with 
different precursors, including urea, melamine, thiourea, 
and dicyandiamide, urea‑based g‑C3N4 shows the highest 
specific surface area (~ 93  m2  g−1). For the pyrolysis tem‑
perature, g‑C3N4 synthesized at 550 °C shows the highest 
specific surface area with a rich mesoporous lamellar struc‑
ture. These results were later reconfirmed by Versaci et al. 
[44]. In addition, they further proved that g‑C3N4 prepared 
at 550 °C with urea had a high content of ‑NH2 group, which 
was conducive to the immobilization of soluble LiPSs.

Based on the direct condensation mechanism, the template 
method is introduced to fabricate g‑C3N4 with 3D secondary 
structures such as hollow or core–shell structures, which could 
not only provide high surface area but also accommodate the 
volume change during cycling. The template and reaction tem‑
perature selected are important, which affect the structure and 
properties of the product. Silica is a common template applied. 
A hollow g‑C3N4 material was prepared using mesoporous silica 

as a template and further constructed into an S@C3N4 composite 
cathode with a core–shell structure [62]. In addition, Han et al. 
used silica microspheres as a hard template and investigated the 
effect of calcination temperature on the structure of the synthe‑
sized hollow g‑C3N4 microspheres [45]. With calcination tem‑
peratures set as 600, 700, and 800 °C, the synthesis procedure is 
shown in Fig. 3e. According to the SEM images of as‑prepared 
g‑C3N4 (Fig. 3f‑h), the thickness of the shell decreases, and the 
microsphere structure collapses as the temperature increases from 
600 to 800 °C. This could be related to the excessively decom‑
pose of the precursors at high temperatures. As a result, the cell 
with g‑C3N4 prepared in 600 °C as the S host exhibited a low 
capacity fading rate of 0.076% per cycle after 500 cycles at 0.5C.

Generally, g‑C3N4 is applied as an additive to the S cathode. 
Li et al. fabricated composite cathodes with g‑C3N4 and S, which 
exhibited a high capacity of 1200 mAh  g−1 at 0.2C and main‑
tained a high capacity of 800 mAh  g−1 after 100 cycles with the 
coulombic efficiency above 99.5% [60]. Yet some studies also 
use g‑C3N4 to construct multifunctional layers on the cathode or 
separator to limit the diffusion of LiPSs. Li et al. coated a layer of 
g‑C3N4 nanosheets on the surface of the S cathode (S‑C3N4) by 
the spraying method [63]. This unique design has the following 
advantages: (1) the g‑C3N4 layer has a strong chemical adsorp‑
tion capability for LiPSs, which can limit LiPSs shuttling and 
alleviate the self‑discharge phenomenon; (2) spraying technology 
ensures the uniformity of the coating, and it is easy to large‑scale 
production with the controlled thickness. Therefore, the cell with 
an S‑C3N4 composite cathode displayed a high capacity of 630 
mAh  g−1 at 5C. Similarly, Xie et al. coated ultra‑thin g‑C3N4 
nanosheets on the commercial polypropylene (PP) separator 
(g‑C3N4 separator) by using the vacuum filtration technology 
[64], which effectively prevents LiPSs from diffusing across the 
separator but allows lithium ions to pass freely (Fig. 3i‑j). Moreo‑
ver, the LiPSs permeation test also showed the strong restriction 
effect of g‑C3N4 for LiPSs diffusion (Fig. 3k‑l). Thus, the cell 
with a g‑C3N4 separator performed a high capacity of 829 mAh 
 g−1 after 200 cycles at 0.2C.

3  Optimization of g‑C3N4

With various synthesis methods, g‑C3N4 could perform 
different microstructures with enhanced specific surface 
area. Beyond this, the LiPSs absorption capability, cata‑
lytic activity, and electron conductivity of g‑C3N4 could 
be further improved via defect engineering and heteroatom 



 Nano‑Micro Lett.          (2022) 14:222   222  Page 6 of 23

https://doi.org/10.1007/s40820‑022‑00954‑x© The authors

doping. Defect engineering plays an important role in 
adjusting the atomic distribution and surface properties of 
nanomaterials and has widespread application in various 
fields including hydrogen evolution reaction [65], oxygen 
evolution reaction [66], and carbon dioxide reduction reac‑
tion [67]. Heteroatom doping is also an effective method 
to regulate the polarity of carbon materials, and various 
heteroatoms including nonmetal atoms and metal‑single 
atoms have been studied extensively [68–70]. In particular, 
the introduction of metal single atoms with unsaturated 
coordination environments, unique electronic structures, 
and high surface free energy could significantly enhance 
the catalytic activity of the materials [71–73]. In recent 
years, defect engineering and heteroatom doping have 
attracted more and more attention in Li–S systems due to 
their significant potential in inhibiting LiPSs shuttling and 
promoting the redox chemistry [74–77].

3.1  Defect Engineering

With a certain proportion of N defects, g‑C3N4 materi‑
als show enhanced adsorption and catalytic performance 
of LiPSs. Huang et al. prepared ultrafine spindle g‑C3N4 

(sCN) with N defects by K treatment (Fig. 4a) [58]. Com‑
pared with the original g‑C3N4, the sCN performs spindle‑
like morphology (Fig. 4b) and an obvious different molec‑
ular structure with a large number of defects manifested as 
N vacancies or cyano groups (Fig. 4c‑d). The introduction 
of N defects increases the polarity of sCN, which leads to 
2–3 times increased LiPSs binding energy compared with 
that of the original g‑C3N4. Therefore, the Li–S cell with 
sCN modified separator delivered a high initial capacity of 
637 mAh  g−1 at 5C and a low capacity fading rate of 0.05% 
per cycle after 500 cycles. Besides, various g‑C3N4 mate‑
rials with different defect structures, concentrations, and 
preparation methods have been reported, which obviously 
improve the performance of Li–S batteries [78, 79]. How‑
ever, excessive N defects could destroy the structure of 
g‑C3N4 and thus decrease its electron transport and LiPSs 
adsorption capability. According to Du et al. [46] (Fig. 4e), 
as the N content decreases from the original 60% (GCN‑
60%N) to 6% (GCN‑6%N), the content of defect increases, 
which leads to an increased LiPSs adsorption capability of 
the material. It is worth noting that when the nitrogen con‑
tent continues to drop below 6%, the adsorption capability 
of the material (GCN‑2%N) for LiPSs begins to decrease. 
This could be related to the destruction of the material 
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structure, which is also reflected in the performance of 
Li–S batteries. The cell with optimized GCN‑6%N/S com‑
posite cathode displayed a high initial capacity of 852.2 
mAh  g−1 at 0.5C and retained a reversible capacity of 
532.4 mAh  g−1 after 300 cycles (Fig. 4f).

3.2  Heteroatoms Doping

Heteroatom‑doped g‑C3N4, including nonmetal atom‑ and 
metal single‑atom‑doped materials, are reported to be 
applied in Li–S batteries with enhanced cycling performance 
and distinct working mechanisms.

Nonmetal atom doping, such as N, S, O, P, and B, 
enhances the electronic conductivity and the LiPSs absorp‑
tion capability of g‑C3N4. Liu et al. [80] prepared O‑doped 
g‑C3N4 nanosheets (OCN) by one‑step self‑supported 
solid‑state pyrolysis (OSSP) technique with urea as the 

precursor and glucose as the oxygen source (Fig. 5a). The 
introduction of O atoms into g‑C3N4 promotes the chemi‑
cal interactions with LiPSs by forming Li–O bonds. Thus, 
the cell with OCN/S composite cathode performed a high 
capacity of 447.3 mAh  g−1 after 500 cycles at 0.5C with 
the capacity fading rate of 0.1% per cycle (Fig. 5b). Zhang 
et al. prepared P‑doped g‑C3N4 (PCN), which was used as 
the S host to enhance the performance of Li–S batteries 
[83]. According to density functional theory (DFT) cal‑
culation results [83, 84], both OCN and PCN have higher 
conductivity and stronger adsorption capability for LiPSs 
compared with original g‑C3N4, which is conducive to 
improving the S utilization efficiency. In addition to O and 
P, B‑doped g‑C3N4 nanosheets (BCN) were prepared by a 
one‑pot thermal condensation method and used as func‑
tional separator coating for Li–S batteries [81]. As shown 
in Fig. 5c, in the heat treatment process, the g‑C3N4 bulk 
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was exfoliated to g‑C3N4 nanosheets due to the blowing 
erosion caused by the decomposition of ammonium chlo‑
ride. At the same time, B atoms were successfully doped 
into g‑C3N4 matrix with N‑B‑N bonds. The TEM images in 
Fig. 5d show that BCN performs the wrinkled and irregular 
lamellar structure. The low polarization overpotential and 
high capacity of Li–S cells with BCN‑coated separator at 
0.5C (Fig. 5e) suggest the improvement of S utilization 
efficiency and redox kinetic.

Yanmsang et al. investigated the adsorption capabilities 
and mechanisms of g‑C3N4‑doped with different heter‑
oatoms (B, O, P and S) for LiPSs on the molecular level by 
DFT calculations [82]. As shown in Fig. 5f‑g, the B‑doped 
g‑C3N4 (B‑g‑C3N4) shows the strongest adsorption capa‑
bility for LiPSs among investigated g‑C3N4 materials. The 
result can be attributed to the lower capability of B atoms 
to attract electrons than C atoms, resulting in more nega‑
tive charge accumulation around pyridinic N atoms and thus 
facilitating charge transfer between g‑C3N4 and LiPSs.

Metal single‑atom doping, such as Fe, Co, and Ni, also 
improves the adsorption and electrical conductivity of 
g‑C3N4 [85–87]. In addition, the metal atoms as electropo‑
sitive active sites could directly interact with LiPSs, which 
largely improves the catalytic activity of doped g‑C3N4 for 
LiPSs redox reactions [86].

Fe atom‑doped g‑C3N4 (Fe‑N2/CN) material with a hier‑
archical porous lamellar structure was successfully prepared 
by Qiu et al. (Fig. 6a‑b) [85]. The uniform pyridinic N sites 
of g‑C3N4 control the coordination structure of Fe‑NC. As 
shown in Fig. 6c, a large number of independent Fe atoms 
with the size of about 2 Å are evenly distributed in obtained 
g‑C3N4. According to the X‑ray absorption near‑side struc‑
ture spectra (XANES) and Fourier transform of Fe K‑edge 
extended X‑ray absorption fine structure (EXAFS) spectra 
of Fe‑N2/CN (Fig. 6d‑g), Fe atoms on g‑C3N4 are positively 
charged and coordinated with two N atoms through N–Fe–N 
bond. These Fe‑N2 unsaturated sites show not only stronger 
LiPSs adsorption capability with higher binding energy 
(Fig. 6h‑i) but also higher catalytic activity for  Li2S decom‑
position with a lower energy barrier (Fig. 6j). Therefore, 
the cell with Fe‑N2/CN@S composite cathode exhibited a 
low capacity fading rate of only 0.011% per cycle after 2000 
cycles at 2C (Fig. 6k). Co atom‑doped g‑C3N4 (Co@C3N4) 
material was also reported with a similar working mecha‑
nism in Li–S batteries [87]. The formation of Co‑S bonds 
effectively immobilizes LiPSs.

Chen et al. compared the adsorption and electrocatalytic 
capability of single‑metal‑atom‑doped g‑C3N4 (M‑C3N4, 
where M = Fe, Co, or Ni) for LiPSs [86]. According to 
DFT calculation results, the metal atoms’ doping can 
enhance the conductivity of g‑C3N4, among which Fe‑
C3N4 and Co‑C3N4 show semi‑metallic properties, while 
Ni‑C3N4 exhibits metallic properties. Moreover, as shown 
in Fig. 6l, Ni‑C3N4 shows the strongest interaction with 
 Li2S6 and leads to the largest response current when 
applied in Li–S batteries (Fig.  6m). In addition,  Li2S 
decomposition presents the lowest energy barrier on the 
surface of the Ni‑C3N4 substrate (Fig. 6n), suggesting that 
Ni‑C3N4 can promote solid–liquid conversion. Therefore, 
the cell with a Ni‑C3N4/C‑modified separator performed a 
high capacity of 893 mAh  g−1 after 300 cycles at 0.5 A  g−1 
with a capacity retention of 89.4%, showing good cycling 
stability and high S utilization efficiency (Fig. 6o).

To summarize, defect engineering and heteroatom dop‑
ing are effective methods to regulate the adsorption capa‑
bility and catalytic activity of g‑C3N4. The performances 
of Li–S cells with optimized g‑C3N4 materials are com‑
pared and listed in Table 1. However, excessive defects 
and heteroatoms could destroy the structure of g‑C3N4. An 
in‑depth understanding of the doping‑ and defect‑struc‑
ture–activity relationship still remains a grand challenge.

4  Design of g‑C3N4‑Based Composites

Although g‑C3N4 has made remarkable progress in Li–S 
systems, it is difficult for pristine g‑C3N4 to enable practical 
performance in Li–S batteries, owing to its intrinsic proper‑
ties, including poor conductivity and low electrocatalytic 
activity. To explore novel g‑C3N4‑based materials with sat‑
isfying physical/chemical properties, g‑C3N4 has been incor‑
porated with other functional materials, such as conductive 
carbon materials, metal nanoparticles, and polar compounds. 
And the final g‑C3N4‑based composites exhibit various 
advantages, such as strong LiPSs immobilization, rapid Li‑
ion transfer, and accelerated conversion of S species.

4.1  Conductive Carbon/g‑C3N4 Composites

Various conductive carbon materials were applied in 
g‑C3N4‑based composite materials, including carbon 
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Fig. 6  a TEM image and b corresponding EDS mappings and c HAADF‑STEM image of Fe‑N2/CN. d Fe K‑edge XANES spectra and e Fou‑
rier transformation of Fe K‑edge EXAFS spectra of Fe‑N2/CN, Fe foil, and  Fe2O3. f Fe k‑space EXAFS curve and corresponding fitting curve, 
and g Fe r‑space EXAFS curve and corresponding fitting curve of Fe‑N2/CN. h Optimized structures and binding energies of  Li2S4 adsorbed on 
Fe‑N2/CN and CN surfaces. i UV–vis spectra of  Li2S4 solution with CN and Fe‑N2/CN. j Decomposition energy barriers of  Li2S on Fe‑N2/CN 
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ety. l Differential charge densities of  Li2S6 adsorbed on  C3N4, Fe‑C3N4, Co‑C3N4 and Ni‑C3N4. m CV curves of symmetric cells with g‑C3N4/C, 
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Elsevier

Table 1  Comparison of performances of Li–S cells with optimized g‑C3N4 materials

Materials S loading (mg 
 cm−2)

S content (wt%) Current rate (C) Capacity (mAh  g−1)/
cycle number

Capacity decay 
rate (%)

References

Defective g‑C3N4/CNTs – 58.6 1 567/500 0.066 [78]
Defective g‑C3N4/PDA 2 62.3 5 476/500 0.05 [58]
O‑g‑C3N4 – 39.2 0.5 447/500 0.1 [80]
B‑g‑C3N4 – – 1 553/500 0.09 [81]
P‑g‑C3N4 1.5 0.2 882/100 0.34 [83]
Ni‑g‑C3N4/crystalline carbon 2.8 – ~ 0.3 893/300 0.035 [86]
Co@C3N4 2 – ~ 0.448 1160/200 0.086 [87]
Fe‑g‑C3N4 1.3–1.5 48.7 2 620/2000 0.011 [85]
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nanotubes (CNTs), porous carbon material, graphene, and 
carbon cloth. The combination of g‑C3N4 with conductive 
carbon materials could effectively improve the electronic 
conductivity of composite materials, which is critical for its 
application in Li–S batteries. In addition to this, different 
carbon materials could also provide various other benefits 
due to their specific structures and properties. For example, 
a large specific surface area of carbon materials could sup‑
press LiPSs diffusion.

4.1.1  CNTs Constructed Conductive Networks

With the characteristic 1D structure and excellent elec‑
tronic conductivity, CNTs could construct a conductive 
network and achieve fast electron conduction. By the 

high‑temperature‑assisted self‑assembly method, Wang 
et al. directly synthesized g‑C3N4 on the CNTs (Fig. 7a) 
[33]. Through hydrogen bonds, cyanic acid and melamine 
not only construct the triazine structure of g‑C3N4 but also 
connect together with the CNTs. After heating treatment, the 
supramolecular structure can be further transformed into the 
final g‑C3N4/CNTs composite. The obtained g‑C3N4/CNTs 
composite shows a network structure with uniform cover‑
age of the g‑C3N4 layer. With largely improved conductiv‑
ity and high LiPSs adsorption capability, the Li–S cell with 
g‑C3N4/CNTs/S composite cathode displayed a high‑capac‑
ity retention of 77.1% after 200 cycles at 1C at a 5 mg  cm−2. 
Chen et al. [89] and Yao et al. [90] prepared g‑C3N4/CNTs 
composite‑based membranes and separately applied them 
as shielding layer and self‑supported cathode. Profited from 
the strong LiPSs adsorption capability of g‑C3N4 and good 
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conductivity network of CNTs, the shuttle effect is largely 
inhibited, and S utilization efficiency is obviously improved.

4.1.2  Highly Conductive Graphene

Graphene is one of the most widely used materials to com‑
bine with g‑C3N4. It processes a similar 2D honeycomb 
structure with g‑C3N4 yet provides a much higher elec‑
tronic conductivity even compared with CNTs. The obtained 
graphene/g‑C3N4 composite shows increased conductivity 
than the original g‑C3N4, which further leads to an enhanced 
cell performance when applied in Li–S systems. Based on 
the cohesion action between g‑C3N4 precursor (melamine) 
and graphene oxide (GO), Nazar et al. synthesized a hybrid 
material (NG‑CN) with high conductivity (Fig. 7b) [42]. 
And they subsequently coupled NG‑CN with cellulose and 
citric acid (CMC‑CA) to construct a stable composite cath‑
ode material (NG‑CN/CMC‑CA/S) with high S loading. The 
cell with NG‑CN/CMC‑CA/S composite cathode exhibited a 
high areal capacity of 14.7 mAh  cm−2 with a sulfur loading 
of 14.9 mg  cm−2, indicating the high S utilization efficiency 
(Fig. 7c). Besides, Dai et al. coated a 2D‑layered composite 
material composed of graphene and g‑C3N4  (C3N4/GS) on 
the S cathode surface [91]. Graphene as the upper collec‑
tor accelerates the electron transfer in the cathode, and the 
strong adsorption capability of g‑C3N4 inhibits the LiPSs 
diffusion. In addition, Guo et al. prepared a 3D porous S/
graphene/g‑C3N4 composite (S/GCN) with high conductiv‑
ity and high stability by a microemulsion‑assisted assembly 
method [32]. As shown in Fig. 7d, the internal oil emul‑
sion dissolved sublimed S and acted as a soft template to 
create pores in the composite material, and the hydrophilic 
GCN tightly packed around the oil emulsion, thus form‑
ing a crosslinked 3D network structure. As the emulsion 
evaporates, the S attached evenly to the GCN walls and was 
eventually encased into the composite. The obtained S/GCN 
performs a cylindrical shape with graphene closely stacked 
with g‑C3N4 nanosheets (Fig. 7e‑f). The abundant N atoms 
and porous cross‑linking network in GCN effectively limit 
the LiPSs dissolution and diffusion into the electrolyte. In 
addition, the 3D interconnected graphene network facilitates 
rapid electron transfer and maintains the integrity of the 
electrode structure, thus ensuring the long‑term cycling sta‑
bility of Li–S cells. The cell with S/GCN composite cathode 

displayed a high capacity of 612 mAh  g−1 at 10C and main‑
tained 974 mAh  g−1 after 800 cycles at 0.5 A  g−1 with a 
high capacity retention of 86% (Fig. 7g). Furthermore, by 
constructing heterostructures, the graphene/g‑C3N4 com‑
posite could further achieve high electrocatalytic activity. 
Wang et al. used a phenyl modification strategy to construct 
g‑C3N4/carbon heterostructures in situ on graphene sheets 
and coated them on the Celgard separator (G@g‑C3N4/C) to 
inhibit the shuttle effect of LiPSs [92]. The g‑C3N4/C hetero‑
structure exhibits a unique electron distribution, showing a 
strong adsorption capability of LiPSs and high electrocata‑
lytic activity for redox reactions. Therefore, the cell with 
G@g‑C3N4/C coating revealed a low capacity fading rate of 
0.050% per cycle after 800 cycles at 1 C.

4.1.3  Porous Carbon Materials Facilitated LiPSs 
Adsorption and Stable Structure

Porous carbon materials provide not only outstanding 
electronic conductivity but also controllable porosity and 
high specific surface area, which could facilitate the LiPSs 
adsorption. Qiu et al. reported g‑C3N4 nanodots embed‑
ded MOF‑derived N, S co‑doped hollow porous carbon 
shells (CN@NSHPC) through a dual‑solvent strategy [93]. 
Adsorption experiments show that the adsorption capability 
of CN@NSHPC composite for LiPSs is significantly higher 
than that of pristine g‑C3N4 and NSHPC. Therefore, the 
cell using CN@NSHPC/S composite cathode displayed a 
low capacity fading rate of only 0.048% per cycle after 500 
cycles at 1C, showing good cycling stability.

Besides, the porous carbon/g‑C3N4 composite was also 
applied to construct the core–shell structure with  S8 (Fig. 7h) 
[88]. As a shell, porous carbon/g‑C3N4 composite provides 
high LiPSs adsorption, high electronic and ionic conductiv‑
ity, and also enough space to alleviate the volume change of 
cathode during cycling [20]. The TEM images in Fig. 7i‑j 
show that the g‑C3N4/C composite performs a hollow spheri‑
cal structure; after S loading, the cavity is filled to form 
a typical core–shell structure (S@g‑C3N4/C). The porous 
g‑C3N4/C shell promotes rapid electron transport and acts as 
a physical barrier in combination with chemisorption (abun‑
dant N atoms in g‑C3N4) to synergistically inhibit LiPSs 
diffusion. Beyond that, Mandal et al. designed a double‑shell 
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structure, which is composed of a hollow mesoporous car‑
bon (HCS) inner layer and a g‑C3N4 outer layer [94]. The 
inner HCS layer provides high electron conductivity, high 
physical adsorption of LiPSs, and large spaces to mitigate 
the volume change of the electrode. The outer g‑C3N4 shell 
can chemically anchor the LiPSs by forming Li‑N bonds. 
Thus, the cell with HCS@g‑C3N4/S composite cathode 
delivered a low capacity fading rate of 0.049% per cycle 
after 500 cycles at 1C.

4.1.4  Carbon Cloth Constructed Independent Electrode

The carbon cloth (CC) combined with g‑C3N4 can not only 
enhance the electron conductivity of composites and can be 
used as an independent free‑standing electrode. Without any 
current collector or binders, the energy density of batteries 
could be enhanced. Liu et al. prepared a g‑C3N4/CC com‑
posite by in situ growing g‑C3N4 nanosheets on the surface 
of 3D CC with abundant pores and used it as the S host [95]. 
Benefited from the strong LiPSs adsorption capability of 
g‑C3N4 and the 3D conductive network of CC, the g‑C3N4/
CC/S composite cathode displayed good cycle stability with 
a high capacity of 892 mAh  g−1 after 250 cycles at 0.2 C. 
Zheng et al. loaded poly (3, 4‑ethylene dioxythiophene) 
(PEDOT) conductive polymer and g‑C3N4 on commercial 
CC, and combined with S to form a free‑standing, flexible 
cathode [41]. As shown in Fig. 7 k, g‑C3N4@CC is synthe‑
sized by annealing CC with g‑C3N4 precursor (urea) at high 
temperature, and S is introduced into g‑C3N4@CC by sul‑
fur–amine chemistry method. In order to further inhibit the 
LiPSs diffusion and improve the overall electrical conductiv‑
ity of the electrode, PEDOT conductive polymer (CP) was 
introduced into the composite cathode by pressure impreg‑
nation, forming the S@CP/g‑C3N4@CC. Thus, the cell with 
S@CP/g‑C3N4@CC cathode exhibits a reversible capacity 
of 516.9 mAh  g−1 after 500 cycles at 1C.

4.2  Metal Nanoparticles/g‑C3N4 Composites

The introduction of metal nanoparticles into g‑C3N4 could 
improve the electrical conductivity and adsorption/cata‑
lytic active sites of composites and further enhance the 
performance of Li–S batteries. Zhang et al. prepared Ag 
nanoparticles modified defective g‑C3N4 (Ag‑CNx) by the 

magnesium thermal reduction and "silver mirror" reaction 
[96]. The TEM image (Fig. 8a) shows that Ag particles are 
evenly distributed on the defective g‑C3N4 nanosheets with‑
out agglomeration. As shown in Fig. 8b‑c, the cell with Ag‑
CNx modified separator shows the lowest energy barrier of 
the nucleation and dissolution reaction of  Li2S. Thus, the 
modified cell exhibits outstanding cycling stability over 550 
cycles at 2C. The Co nanoparticle‑modified g‑C3N4 com‑
posites also show high catalytic activity for LiPSs redox 
reactions, which were reported as functional materials for 
modified cathodes [98] and separators [99].

Compared with the strategy using a single kind of metal 
nanoparticles, the synergistic interaction between different 
kinds of metal nanoparticles can enhance the adsorption 
capability and electrocatalysis of g‑C3N4 to LiPSs more 
effectively. Guo et al. prepared an electrocatalyst composed 
of a highly conductive N‑deficient g‑C3N4 (ND‑C3N4) and 
a very small amount of hollow PdNi alloy nanospheres 
(PdNi@ND‑C3N4) by using the galvanic substitution effect 
[97]. As shown in Fig. 8d, in the designed PdNi@ND‑C3N4 
composite, the PdNi alloy and introduced N vacancies 
exhibit strong chemisorption capability to LiPSs and high 
catalytic activity for their redox conversion. Moreover, the 
pyrrole ring of g‑C3N4 provides a mediator for the rapid 
transfer of Li‑ion with high lithiophilicity. In situ Fourier 
transform infrared spectroscopy (FT‑IR) revealed the state 
changes of S species on the PdNi@ND‑C3N4 surface dur‑
ing the charge and discharge process, as shown in Fig. 8e‑f. 
When discharged to 2.3 V, soluble LiPSs were detected. The 
characteristic peak at 1073  cm−1 is related to the stretching 
vibration of asymmetric C‑N bonds. The interaction between 
Li in LiPSs and electron‑rich pyrrole rings in PdNi@ND‑
C3N4 causes the vibration of C‑N bonds. With the increase 
of discharge depth, the strength of the C‑N bond becomes 
weaker, indicating the conversion of soluble LiPSs to insol‑
uble  Li2S. When the discharge voltage reaches 2.0 V, the 
characteristic peak of the C‑N bond disappears, indicating 
the completed conversion to  Li2S at the cooperative catalytic 
interface of PdNi@ND‑C3N4. In the charging process, the 
characteristic peak of the C‑N bond appears first and then 
disappears, which demonstrates the  Li2S is oxidized to solu‑
ble LiPSs and finally to S. The DFT calculation results in 
Fig. 8g‑h show that compared with g‑C3N4 materials com‑
bining one single‑metal Pd, the reduction of S species and 
decomposition of  Li2S at the surface of PdNi@ND‑C3N4 
showed a much lower Gibbs free energy change, indicating 
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the synergistic catalysis of PdNi@ND‑C3N4. Thus, the cell 
with PdNi@ND‑C3N4/S composite cathode delivers a high 
discharge capacity of 989 mAh  g−1 after 500 cycles at 1C 
(Fig. 8i); increasing the sulfur loading to 6.0 mg  cm−2, the 
cell exhibits a low capacity fading rate of only 0.025% per 
cycle, suggesting the excellent cycling stability. Fe/Co‑based 
g‑C3N4/carbon composite material (Fe/Co‑C3N4/C) shows 
similar synergistic catalysis [100]. With high conductivity, 
large specific surface area, and high catalytic activity, the 
cell with Fe/Co‑C3N4/C/S composite cathode shows much 
enhanced electrochemical performance compared with that 
of  C3N4/C/S cathode.

4.3  Polar Compounds/g‑C3N4 Composites

Polar compound, such as transition metal compound, is 
another representative material to composite with g‑C3N4 
due to their adsorption capability and catalytic activity. The 
strongly polar sites of polar compounds could interact with 
LiPSs and lower the energy barrier of their following reac‑
tions. Deng et al. uniformly dispersed lamellar CoS onto 
g‑C3N4 nanosheets and then compounded them with conduc‑
tive carbon (Ketjen black, KB) to prepare an ultra‑thin mul‑
tifunctional separator coating (CoS@g‑C3N4/KB, ~ 2.1 μm) 
[103]. The Li‑N bond and the Lewis acid–base interaction 
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between CoS and LiPSs inhibit the shuttle effect. Metal 
oxide‑based g‑C3N4 composites, including  TiO2/g‑C3N4 
[104] and  Fe3O4/t‑C3N4 [105], are also applied in Li–S bat‑
teries to improve S utilization and capacity retention.

In addition to their own adsorption and catalytic capa‑
bilities, some compounds can also form heterostructures by 
composing with g‑C3N4, which would further improve their 
catalytic performance for redox conversion of S species. 
On the interfaces of heterostructures, electrons can be rear‑
ranged to modify the active sites, and the synergy of differ‑
ent active sites can promote reaction kinetics. By combing 
bimetallic phosphide CoFeP with g‑C3N4 nanotube (t‑CN), 

a Mott–Schottky heterojunction catalyst (CoFeP@CN) was 
prepared by Cabot et al. [101]. The tubular morphology of 
t‑CN was maintained with CoFeP nanocrystals uniform 
distributed on the surface (Fig. 9a‑b). As an n‑type semi‑
conductor, g‑C3N4 has a work function of about 4.4 eV and 
a band gap of 2.6 eV, while the work function of CoFeP is 
about 4.8 eV (Fig. 9c). When they contact, the difference in 
Fermi energy levels drives electrons from g‑C3N4 to CoFeP 
until their work functions reach equilibrium at the interface 
(Fig. 9d). In equilibrium, the electron band of g‑C3N4 at the 
interface is bent upward, forming a Mott‑Schottky hetero‑
structure. CoFeP@CN has suitable electronic structure and 
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charge rearrangement characteristics, which can accelerate 
the redox conversion of S species. Compared with CoFeP 
and t‑CN, CoFeP@CN shows the lowest Gibbs free energy 
change, suggesting that CoFeP@CN heterojunction catalyst 
can promote the nucleation of  Li2S (Fig. 9e). Moreover, the 
tubular shape of CoFeP@CN facilitates the diffusion of Li 
ions, alleviates volume changes of S cathode, and provides 
rich adsorption sites to effectively capture soluble LiPSs. 
Thus, the cell with S@CoFeP@CN composite cathode out‑
putted a high capacity of 606 mAh  g−1 after 700 cycles at 
3C with a low capacity fading rate of 0.014% per cycle and 
a high coulombic efficiency of 99.6% (Fig. 9f). Chen et al. 
prepared another heterojunction composite  MoS2/g‑C3N4, 
with  MoS2 nanosheets growing in situ on porous g‑C3N4 
nanosheets [59]. TEM images in Fig. 9g‑h show that the 
 MoS2/g‑C3N4 composite has a lamellar and porous structure 
with a pore size of 5–20 nm. With strong chemical polarity, 
high porosity, and heterostructure,  MoS2/g‑C3N4 can effec‑
tively restrict the LiPSs diffusion and accelerate the redox 
conversion of S species. The cell with S/MoS2/g‑C3N4 com‑
posite cathode delivered a high capacity retention of 88.47% 
after 400 cycles at 8C (Fig. 9i) and low self‑discharge behav‑
ior of 0.026% per hour after 10 days (Fig. 9j), indicating the 
good rate capability and cycling stability.

With polar compounds/g‑C3N4 composites, electrodes 
and separators with special structures were constructed, 
which further improved the performance of Li–S batteries. 
Huang et al. designed a sandwich cathode material (Fig. 9k), 
in which S was embedded between layered g‑C3N4 and 
 TixOy‑Ti3C2 (OTC) [102]. The strong adsorption of g‑C3N4 
and Lewis acid–base interaction of the OTC heterojunction 
can immobilize LiPSs effectively. Furthermore, g‑C3N4 
and OTC simultaneously adsorb Li and S atoms in LiPSs, 
which can promote the cleavage of long‑chain LiPSs and 
thus accelerate the reduction kinetics. The cell with such 
OTC/S/C3N4 cathode outputted a high discharge capacity of 
750 mAh  g−1 after 2000 cycles at 0.5C, showing outstanding 
cycling stability and high S utilization efficiency. Moreover, 
Dong et al. designed a multifunctional ion sieve composed 
of three kinds of 2D nanosheets, including g‑C3N4, boron 
nitride (BN), and graphene (BN/graphene‑C3N4), and used it 
as a separator coating [52]. As shown in Fig. 9l, the g‑C3N4 
overlaps with the graphene sheet to form a sandwich struc‑
ture in which the BN sheet is vertically embedded. In the 
g‑C3N4 monomer, there are ordered channels with a size of 
3 Å, which can effectively prevent the LiPSs shuttling but 

allow free diffuse of Li ions; BN as a good electrocatalyst 
can accelerate the redox reaction of S species. The conduc‑
tive network of graphene can promote the electron trans‑
port. Therefore, the cell with BN/graphene‑C3N4 coating 
displayed a low capacity fading rate of 0.01% per cycle after 
500 cycles at 1C with a high sulfur loading of 6 mg  cm−2, 
suggesting the high S utilization efficiency.

The construction of g‑C3N4‑based composites offers 
new possibilities for g‑C3N4 as additives in high‑perfor‑
mance Li–S batteries. With different materials, the com‑
posites could realize the balance of various properties 
including catalytic activity and conductivity. The perfor‑
mances of Li–S cells with g‑C3N4‑based composites are 
compared and listed in Table 2. However, we note that 
most of the polar compounds were not combined with 
g‑C3N4 alone but with conductive carbon materials at 
the same time [106]. Since the polar compounds applied 
show low conductivity as well as g‑C3N4, carbon materi‑
als are required to construct a conductive network which 
enables the better catalytic performance of the materials. 
This leads to a notable issue of the increasing weight of 
inactive material in Li–S batteries.

5  Other  CxNy Materials

With different C/N ratios, carbon nitride  (CxNy), other than 
g‑C3N4, shows different molecular configurations, which 
endows them with different physicochemical characteris‑
tics and electronic properties.

The regulation of the C/N ratio could change the coordi‑
nation environment of N, which further leads to enhanced 
catalytic performance. Yu et al. reported a covalent organic 
framework (COF)‑like  CxNy material,  C4N, with a C/N ratio 
of 4:1 connected with pyrazine, and subsequently prepared 
ultra‑small colloidal  C4N quantum dots  (C4NQDs) with the 
average size of 2.2 nm (Fig. 10a) [112]. Pyrazine N atoms 
and carbonyl groups at the edge of  C4NQDs show prefer‑
ential adsorption capability to LiPSs with significantly 
higher binding energy compared with that of the N sites in 
the  C4NQDs plane (Fig. 10b). The electrochemical perfor‑
mance further confirmed the excellent catalytic capability of 
 C4NQDs for LiPSs redox reactions (Fig. 10c‑d). Compared 
with that on pristine carbon paper (CP), the  Li2S precipi‑
tation and decomposition on  C4NQDs/CP perform higher 
capacity contributions and an earlier peak current response. 
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Therefore, the Li–S cell with  C4NQDs@CNTs modified 
separator exhibited excellent cycling stability with a low 
capacity fading rate of 0.061% per cycle after 800 cycles 
at 1C (Fig. 10e). Besides, the LiPSs adsorption on 2 D  C2N 
nanosheets was investigated by Wang et al. [113]. Unlike 
g‑C3N4,  C2N is connected by one N atom and two C atoms 
with higher structural stability. The original graphene C‑ring 
structure is surrounded by six N atoms in  C2N, each of which 
has a suspended bond. The size of the hole formed in the 

middle is smaller than that of long‑chain LiPSs, which could 
physically inhibit the shuttle effect. In addition,  C2N shows 
highly negative Gibbs free energy for  Lin‑C2N and strong 
adsorption capability for  Li2S. Its high LiPSs adsorption 
capability was also confirmed by Zhang et al. using first‑
principles calculations [114]. Comparing four nonmetallic 
layered materials (graphene, BN,  C2N, and  C3N4),  C3N4 and 
 C2N exhibit stronger LiPSs adsorption capability through the 

Table 2  Comparison of performances of Li–S cells with g‑C3N4‑based composites

Materials S loading (mg  cm−2) S content (wt%) Current rate (C) Capacity (mAh 
 g−1)/cycle 
number

Capacity 
decay rate 
(%)

References

g‑C3N4/Graphene oxide – –  ~ 0.197 700/300 0.037 [107]
N‑doped graphene‑ g‑C3N4/cellulose‑

citric acid
2.0 65.45 0.05 – – [42]

g‑C3N4@N, S co‑doped hollow porous 
carbon shell

1.7–2.0 – 1 445/500 0.048 [93]

PEDOT/g‑C3N4@CC 4.7 – 1 517/500 – [41]
g‑C3N4@porous carbon nanofiber 1.2 – 0.6 466/500 0.056 [108]
3D Graphene oxide‑g‑C3N4 sponge 4 73  ~ 0.3 974/800 0.017 [32]
g‑C3N4/carbon nanotubes 1 64 1 584/500 0.08 [33]
Reduced graphene oxide/ g‑C3N4/carbon 

nanotubes
1.5 56.64 1 620/500 0.03 [34]

Hollow porous carbon nanosphere/g‑
C3N4

1 51.62 1 719/500 0.049 [94]

Hierarchical porous carbon/g‑C3N4 1.0–1.2 51.6 1 757/250 0.024 [109]
g‑C3N4/carbon spheres 1.2 46.9 1 636/400 0.09 [88]
g‑C3N4/carbon nanotubes 4.74 – 0.5 633/300 0.092 [90]
g‑C3N4/carbon cloth 2.5 – 0.2 892/250 – [95]
g‑C3N4/carbon fiber paper 2.21–2.66 45.06 – –/400 0.068 [110]
Reduced graphene oxide /g‑C3N4/carbon 

fiber paper
1.62–1.89 45 1 –/800 0.056 [111]

g‑C3N4/graphene oxide 0.9–1.1 45.81 1 612/1000 – [91]
graphene@g‑C3N4/C 1.0 80 1 464/800 0.050 [92]
g‑C3N4/carbon nanotubes 1.4 57.6 1 –/500 0.03 [89]
Co‑g‑C3N4 1.31 51.2 1 740/300 0.03 [98]
Ag‑defective g‑C3N4 1.3 53.3 2 652/550 0.053 [96]
Co‑CNTs/defective g‑C3N4 – – 1 –/1000 0.04 [99]
PdNi@ND‑C3N4 2 55.6 1 989/500 0.027 [97]
Fe/Co‑C3N4/C 1.8 47.6 0.2 749/135 0.156 [100]
TiO2/g‑C3N4 3.1 59.6 0.5 540/500 0.063 [104]
OTC/C3N4 1.2 – 0.5 750/2000 0.022 [102]
CoFeP@CN 1.0 – 3 606/700 0.014 [101]
MoS2/g‑C3N4 1.5 59.1 2 521/400 0.049 [59]
CoS@g‑C3N4/KB 1.5 68.4 1 572/500 0.030 [103]
Fe3O4/t‑C3N4 0.8–1.0 – 2 658/1000 0.020 [105]
BN/graphene‑C3N4 6.0 70 1 603/500 0.01 [52]
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interfacial interactions and inhibit the dissolution of LiPSs 
into the electrolyte.

It is worth noting that, in addition to the adsorption and 
catalytic capability, the electron conductivity of the materi‑
als can also be regulated with different C/N ratios. Zhang 
et al. designed a new 2D carbon nitride,  C5N, by introduc‑
ing the vacancy defects into monolayer  C3N and studied its 
adsorption capability for LiPSs [115]. After the introduction 
of  VC +  VN vacancy defects in  C3N and the optimization of 
the full structure, the new configuration is composed of 5 
carbon nitrogen ring‑8 carbon nitrogen ring‑5 carbon ring. 
The electronic band structure and state density (DOS) reveal 
that the Fermi level of  C5N is below the maximum value of 
the valence band and its band gap structure is similar to that 
of Cu metal, indicating that  C5N has good electrical con‑
ductivity and metallic properties. Besides, it also shows an 
adsorption capability of both LiPSs and  Li2S. Comparing 10 
kinds of N‑containing 2D materials  (C9N4,  C2N, BN, CTF, 
 C2N6S3, g‑C3N4, p‑C3N4,  C3N5, S‑N2S, and T‑N2S), Chen 
et al. found that the  C9N4 and  C2N6S3 perform good elec‑
tronic conductivity and strong adsorption for LiPSs [116]. 
With increased electronic conductivity of  CxNy, the LiPSs 
adsorbed can directly lose/gain electrons to be oxidized/

reduced, which avoids the loss of LiPSs and improve the 
rate capability of Li–S batteries.

However, other than g‑C3N4, most of the  CxNy materials 
used in Li–S batteries have only been reported in simulation. 
Future experimental studies will benefit the understanding 
and application of these materials.

6  Summary and Outlook

To date,  CxNy materials, represented by g‑C3N4, have been 
widely applied in Li–S batteries as additives to enhance 
electrochemical performance due to their strong LiPSs 
adsorption capability and high tunability in composition 
and structure, which leads to controllable properties. With 
the advancing studies on  CxNy‑based materials, the struc‑
ture–activity relationship is gradually revealed. The changes 
in the chemical composition, for example, the regulation of 
the C/N ratio and the introduction of heteroatoms, could 
modulate the coordination structure of catalytic active 
sites and the electronic structure of the material, leading 
to increased catalytic capability and electronic conductiv‑
ity. The construction of various structures, such as porous 
nanosheet structure, spindle‑like structure, and hollow 
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spherical structure, could lead to high specific surface area 
and increasingly exposure of active sites, which also enhance 
the adsorption and electrocatalytic capability of  CxNy mate‑
rials and further improve the rate performance of Li–S bat‑
teries. Besides, the hollow or core–shell structure could 
also accommodate the volume change during cycling and 
increase the cycle life of Li–S batteries. However, the under‑
standing of the structure–activity relationship of  CxNy is still 
limited. In‑depth understandings, such as the effects of dop‑
ing and defect structures on the catalytic and conductive 
performance, are critical for the development of  CxNy‑based 
materials for advanced Li–S batteries.

At this stage, Li–S batteries are developing toward prac‑
ticality. The demonstration for practical specific energy 
and stability dominates the future development direc‑
tion of Li–S batteries. Based on the understanding of 
 CxNy‑based materials and Li–S chemistry, we identified 
the existing limitations and provided our perspective on 
future rational design of advanced  CxNy‑based materials 
for high‑performance Li–S batteries:

1. As an inactive material,  CxNy should be added at low 
amounts to increase the overall energy density of the 
Li–S cell. According to some reported works [35, 45], 
g‑C3N4 added as S host accounts for about 15% of the 
total cathode weight. The reduction of  CxNy content 
requires an increase in their specific surface area, which 
means an increased in the adsorption capability, and 
therefore, a similar function could be realized with a 
smaller amount of  CxNy materials. Different preparation 
methods, such as the hard template method and strip‑
ping‑assisted method, can be used to obtain the g‑C3N4 
with controllable morphology and high specific surface 
area;

2. The electronic conductivity of g‑C3N4, which limits the 
rate performance of Li–S batteries, should be increased. 
Although improved by numerous reported methods, the 
conductivity of g‑C3N4 is still unsatisfactory. The effect 
of heteroatom doping and defect treatment on the con‑
ductivity of g‑C3N4 appears limited; the additional car‑
bon material introduced in the form of g‑C3N4/carbon 
composite increases the amount of inactive materials. 
Besides these methods, the electronic conductivity of 
the materials could also be increased by regulating the 
C/N ratios. Synthesizing novel  CxNy materials with 
higher electron conductivity and studying their adsorp‑
tion and electrocatalytic effect on LiPSs could be pro‑
spective directions in Li–S systems.

3. The catalytic mechanism of  CxNy‑based materials 
should be systematically studied. Although most of 
the  CxNy‑based materials are proposed with a work‑
ing mechanism, the reaction mechanism of  S8 with 
 CxNy‑based materials is still unclear. Since the conver‑
sion process of LiPSs is quite complex, it is necessary 
to combine advanced in situ characterization techniques 
such as cryo‑electron microscopy, in situ Raman, and 
XRD to monitor the electronic structure and morphol‑
ogy changes of intermediates on  CxNy‑based materials 
under various conditions in real time. By comparing 
series of materials in parallel, the structure–activity 
relationship can be revealed, which is critical for further 
material design.

4. The enhancement of Li anode stability with  CxNy‑based 
materials worths more attention. The growth of dendrite 
limits the cycling life of Li anode. Besides, the soluble 
LiPSs lead to the passivation of Li anode in Li–S bat‑
teries. g‑C3N4 has high shear modulus and good affinity 
with Li ions, and thus, it is promising in promoting the 
uniform deposition of Li ions and inhibiting the growth 
of Li dendrites [39, 40]. However, relevant studies are 
very limited. With more effort on this topic, an enhance‑
ment of Li anode stability with  CxNy‑based material is 
expected.

Looking into the future, there are infinite opportunities 
and challenges for the vigorous development of  CxNy‑based 
materials. With further efforts, it is expected that  CxNy‑based 
materials will promote the practical application of high 
energy density and long‑life Li–S batteries.
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