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S1 RCS Simulation 

The RCS simulation of EM absorber was used CST software based on far-field response. In 

this simulation, the constructed model consists of the absorber/ paraffin layer and the perfect 

electric conductor (PEC) layer, where PEC also is also regarded as a reference value to 

determine the RCS reduction. In detail, the length and width of each layer were set as 200 mm 

and the thicknesses of the absorber/paraffin layer (15% filling ratio) and the PEC layer were set 

as 2.0 and 5.0 mm, respectively. The simulation used plane wave excitation, and the EMW 

propagates in the negative direction of the x-axis and the electric polarization direction is along 

the z-axis. In addition, the free space boundary conditions were used and the center frequency 

was defined as 11 GHz. The RCS value of the simulated FFSC uses the time domain method 

for calculation and the detail equation expressed as following: 

𝜎(𝑑𝐵 𝑚2) = 10𝑙𝑜𝑔 [
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where S is the area of the layer, λ is the length of the incident EMW, Es and Ei are the electric 

field intensity of transmitting waves and receiving waves, respectively. 

S2 Micromagnetic Simulation 

The micromagnetic simulation in the paper is carried out by the Mumax3 software. It is an 

open-source software and inputted by a subset of Go’s syntax. The dynamic physical process 

is simulated on the basis of the Landau-Lifshitz-Gilbert equations and the principle of minimum 

energy. The solving process of 3D model is relied on the finite difference algorithm. 

In this work, two kinds of simulation program are carried on to describe the dynamic spin 

structure of individual Ni nanoparticle and Ni nanoparticle array, respectively. For the 

individual nanoparticle, the universe is 500 × 500 × 500 nm. The particle is consisted of several 

grains with random shape and orientation. For simulating the Ni chain, the universe is 500 × 

500 × 1500 nm. The gap between neighbor particles is zero. The magnetic parameters of the Ni 

nanoparticle are shown below: saturation magnetization Ms = 1.2×106 A m-1, micromagnetic 

exchange constant A = 1×10-12 J/m, magnetocrystalline anisotropy constant Ku1 = 1.15×105 

J/m3, the anisotropic direction is vector (0, 0, 1), the magnetic field direction is Uniform (0, 0, 
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1) and damping factor of spin precession α = 0.15. The software Muview is used to visualize 

the recorded data. The frequencies of applied field in the simulation are 2, 10, and 18 GHz. 

S3 Corresponding Formula in Manuscript 

Formula S1: Reflection loss 

Zin = Z0(
μ
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RL = 20log|(Zin-Z0)/(Zin+Z0)| 

Z0 stands for the impedance of free space, Zin is the input impedance of the absorber, d is the 

thickness of the absorber, and c represents the velocity of light. 

Formula S2: Cole-Cole semicircle 

ε𝑟  =  ε′ −  jε″ =  ε∞ +
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1 + 𝑗2𝜋𝑓𝜏
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ε𝑠 , ε∞ , 𝑓  and 𝜏  stands for the static dielectric constant, the dielectric constant at infinite 

frequency, the frequency and the polarization relaxation time.  

Formula S3: attenuation constant 
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√2
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Formula S4: calculated delta value 
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2
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Formula S5: eddy current factor 

𝐶0 = 𝜇′′(𝜇′)−2𝑓−1 = 2𝜋𝜇0𝑑2𝜎/3 

𝜇0 and 𝜎 are the permeability of vacuum and the electric conductivity, respectively. 

Formula S6: quarter-wavelength model 

𝑡𝑚 = 𝑛𝑐/(4𝑓𝑚√|𝜇𝑟||𝜀𝑟|)    (n=1, 3, 5&) 

𝑓𝑚is the peak frequency, and 𝑡𝑚 is the absorber thickness. 
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S4 Supplementary Figures and Table 

 

 

Fig. S1 Crystal structures of Ti3AlCN and Ti3CN nanosheets 

 

 

Fig. S2 (a) digital image of novel magnetic heat treatment furnace; (b) digital image of highly 

oriented Ni chains 

 

 

Fig. S3 SEM images of (a) Ni chains, and (b-d) BCMNA-2 
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Fig. S4 Load-bearing capacity of (a-e) BCA and (f-j) BCMNA-1 with 10/20/50/100/200g 

weight; (k) load-bearing capacity of BCMNA-1 (without adding chitosan) with 200g weight; 

(l) digital image of pure Ti3CNTx aerogel 

 

Fig. S5 Raman spectra of BCA and BCMNA-1 
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Fig. S6 Deductive calculation of reflection loss under 1.00 mm thickness 

 

Fig. S7 The EMW parameters of samples, the real ε′ (a) and imaginary ε″ (b) parts of the 

complex permittivity; real μ′ (c) and imaginary μ″ (d) parts of the complex permeability 
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Fig. S8 Cole-Cole semicircle of BCA, BCMA and BCMNA-1 

 

Fig. S9 2D RLs-f curves of samples at (a) Ku-band and (b) S-band 

 

Table S1 EMW absorbing properties of similar materials 

Sample 
|𝐑𝐋|  
(dB) 

Bandwidth 

(GHz) 

Thickness

(mm) 
Refs. 

MX/Gelatin AG 59.5 6.2 2.00 [S1] 

TiO2/MX/ rGO AG 65.3 2.8 2.50 [S2] 

MX/rGO AG 49.1 2.9 1.20 [S3] 

MX/polyimide AG 41.8 6.5 2.57 [S4] 

Cellulose/MX AG 43.4 4.5 2.00 [S5] 

MX/Fe3O4 57.3 2.0 1.90 [S6] 

MX/NiCo2O4 50.9 1.5 2.18 [S7] 

MX/Ni Chain/ZnO 35.1 3.0 2.80 [S8] 

RGO/MX/Fe3O4 51.2 4.7 2.90 [S9] 

MX/FeCo 43.7 0.9 2.90 [S10] 

CoNi/RGO AG 53.3 3.5 2.95 [S11] 

Ni/GO AG 47.0 6.8 2.00 [S12] 

Ni-NiO/carbon AG 41.9 3.5 1.50 [S13] 

Co/crystalline carbon/carbon AG 43.0 2.6 1.50 [S14] 

Fe3O4/ZIF-67/wood AG 23.4 4.5 1.50 [S15] 
BCMNA-2 31.9 2.3 1.00 this work 

MX: MXene   AG: aerogel   RGO: graphene oxide 
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Fig. S10 RCS schematic diagram and RCS reduction achieved by subtracting the samples with 

the PEC 

 

Fig. S11 Attenuation constant of samples 

 

Fig. S12 Calculated delta value maps: (a) BCA, (b) BCMA, (c) BCMNA-1, and (d) BCMNA-2 
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Fig. S13 Co value of BCMNA-1 and BCMNA-2 

 

Fig. S14 Micromagnetic simulation of single Ni particular at 2 GHz 

  

Fig. S15 Micromagnetic simulation of single Ni particular at 10 GHz 
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Fig. S16 Micromagnetic simulation of single Ni particular at 18 GHz 

 

Fig. S17 Micromagnetic simulation of Ni chain at 2 GHz 
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