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HIGHLIGHTS 

• MXene/graphene composites possess high potential in future biomedical applications.

• The hybridization and surface functionalization of MXene-graphene composites should be further explored to improve the biocompat-
ibility, high stability, and multifunctionality.

• The synthesis methods, performances, potential toxicologies, as well as future perspectives of MXene/graphene composites are discussed.

ABSTRACT MXenes, transition metal carbides and 
nitrides with graphene-like structures, have received 
considerable attention since their first discovery. On 
the other hand, Graphene has been extensively used 
in biomedical and medicinal applications. MXene and 
graphene, both as promising candidates of two-dimen-
sional materials, have shown to possess high potential 
in future biomedical applications due to their unique 
physicochemical properties such as superior electri-
cal conductivity, high biocompatibility, large surface 
area, optical and magnetic features, and extraordinary 
thermal and mechanical properties. These special struc-
tural, functional, and biological characteristics suggest 
that the hybrid/composite structure of MXene and 
graphene would be able to meet many unmet needs in 
different fields; particularly in medicine and biomedi-
cal engineering, where high-performance mechanical, 
electrical, thermal, magnetic, and optical requirements 
are necessary. However, the hybridization and surface 
functionalization should be further explored to obtain 
biocompatible composites/platforms with unique phys-
icochemical properties, high stability, and multifunctionality. In addition, toxicological and long-term biosafety assessments and clinical 
translation evaluations should be given high priority in research. Although very limited studies have revealed the excellent potentials of 
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MXene/graphene in biomedicine, the next steps should be toward the extensive research and detailed analysis in optimizing the properties 
and improving their functionality with a clinical and industrial outlook. Herein, different synthesis/fabrication methods and performances 
of MXene/graphene composites are discussed for potential biomedical applications. The potential toxicological effects of these composites 
on human cells and tissues are also covered, and future perspectives toward more successful translational applications are presented. The 
current state-of-the-art biotechnological advances in the use of MXene-Graphene composites, as well as their developmental challenges 
and future prospects are also deliberated. Due to the superior properties and multifunctionality of MXene-graphene composites, these 
hybrid structures can open up considerable new horizons in future of healthcare and medicine.

KEYWORDS Graphene; MXene; Composites; Hybrid structures; Biocompatibility; Cancer theranostics; Biomedical engineering

1 Introduction

Today, with extensive advances in designing intelligent 
(nano)structures with the purposes of targeted delivery/
therapy and diagnosis with high accuracy and efficacy, the 
hybridization of materials has been focused by researchers 
[1–3]. For instance, Tu et al. [4] introduced three-dimen-
sional (3D) microflowers constructed from MXene/boron 
carbon nitride hybrids for wearable all-solid-state flexible 
micro-supercapacitors with high power density and large 
scalability [4]. MXenes can be hybridized to improve their 
features or attain new properties and multiple functionalities. 
MXene-based composites have promising applicability for 
high-performance energy-related devices and flexible bioel-
ectronics [2, 5, 6]. MXene-based (nano)structures with high 
electrical conductivity, light-to-heat conversion, photocata-
lytic activity, and hydrophilicity have been broadly studied 
for manufacturing nanostructures with suitable multifunc-
tionality [7–9]. Instead, graphene-based (nano)structures 
exhibited unique physicochemical properties such as pH 
sensitivity, stiffness, high electrical conductivity, large sur-
face area, and mechanical strength [10, 11]; these materials 
with large surface area, high thermal/electrical conductivity, 
optical transmittance, electron mobility, and young modulus 
values have found their place in a variety of biomedical fields 
[12–14]. Since MXene nanosheet illustrated high efficiency 
as hybridization matrix over graphene, several MXenes/gra-
phene hybrid composites have been designed with excellent 
structural robustness, conductivity, and flexibility properties 
as well as unique electrical/electrochemical and mechani-
cal features (Fig. 1) [15–19]. These composites have shown 
an improved through-plane thermal conductivity, when 
they applied in polyethylene glycol matrix. The advanced 
electromagnetic interference (EMI)-shielding effective-
ness of the designed composites reached ∼36 dB at the 2.5 
mm thickness [20]. It was indicated that magnetic MXene 

 (Ti3C2Tx)-reduced graphene oxide aerogels anchored with 
magnetic nickel nano-chains exhibited suitable multifunc-
tionality, hydrophobicity, and heat insulation activity [15]. 
In addition, MXene  (Ti3C2Tx)-graphene oxide hybrid foams 
were prepared via freeze-drying and reduction heat treatment 
techniques with enhanced electrical conductivity and superb 
EMI performance, which make them excellent candidates 
to be utilized in smart and next-generation of devices [21].

MXene-graphene hybrids with high conductivity, thermal 
stability, and excellent EMI have found their applications 
in designing novel supercapacitors and multifunctional sen-
sors [22, 23]. 3D MXene  (Ti3C2Tx)-graphene hybrid aero-
gels with aligned cellular microstructures were prepared 
through hydrothermal assembly followed by directional-
freezing and freeze-drying processes [24]. These porous 
materials with significantly conductive architectures (up to 
1085 S  m–1) exhibited superb electrical conductivity (695.9 
S  m–1) and EMI-shielding effectiveness (more than 50 dB 
in the X-band at a low MXene content of 0.74 vol.%) [24]. 
Additionally, the self-healing ability is one of the impor-
tant properties that should be considered for manufacturing 
smart and long-life multifunctional devices based on sus-
tainable technologies. As an example, self-healable MXene 
 (Ti3C2Tx)-graphene composite aerogel electrodes with high 
conductivity and large specific surface area were constructed 
utilizing self-healing polyurethane (outer shell) [25]. Like-
wise, biomimetic MXene-graphene oxide fibers designed by 
inspiring from the structure of wood exhibited significant 
tensile strength with high electrical conductivity, provid-
ing structures with unique morphologies and functionalities 
for high-value fabric-based applications [26]. Since, there 
are very limited studies around the biomedical applications 
of MXene-graphene hybrids, and there is still a gap in this 
field regarding the important challenges, optimization, and 
functionalization of them, particularly in bio- and nanomedi-
cine; herein, we specifically discussed about the biomedical 
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potentials of MXene-graphene hybrids with recent advance-
ments and important challenging issues to motivate research-
ers for further explorations in this field of science.

2  Synthesis Approaches

MXenes have been typically prepared via the selective 
removal of “A” layer from their MAX or non-MAX phase 
parents by acid etching, where A is generally group 13 or 
group 14 elements in the periodic table [27, 28]. Addition-
ally, several top-down and bottom-up techniques have been 
introduced for synthesizing MXenes, including urea glass 
method [29], chemical vapor deposition [30], molten salt 
etching [31], hydrothermal fabrication [32], and electro-
chemical preparation [33]. Chemical vapor deposition and 
wet etching techniques have been widely reported for fabri-
cating MXenes [34]. Notably, high-qualified MXenes with 

the presence of terminations were fabricated by applying 
different wet etching methods, causing to produce MXenes 
with basically hydrophilic nature [35]. On the other hand, 
graphene structures with desired size, purity, and crystallin-
ity have been broadly fabricated by chemical vapor deposi-
tion, mechanical exfoliation from graphite, and reduction in 
graphene oxide via heating [36].

Various physical and chemical approaches have been 
reported for the synthesis of MXene/graphene compos-
ites, including mechanical mixing, self-assembly method, 
hydrothermal technique, heat treatment, and reagent reduc-
tion treatment. Among them, hydrothermal techniques have 
been widely applied to prepare composites. For instance, 
MXene  (Ti3C2Tx)/reduced graphene oxide structures were 
prepared at low temperature (65 °C) followed by a freeze-
drying process. In the hydrothermal reaction, ascorbic acid 
was utilized to prevent MXene structures from being oxidized 
(Fig. 2) [24]. Additionally, 3D porous MXene  (Ti3C2Tx)/

Fig. 1  MXene-graphene hybrids with fascinating physicochemical properties/features can be considered as promising candidates for biomedical 
explorations
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reduced graphene oxide aerogels were synthesized via a 
hydrothermal technique under a temperature of 95 °C. The 
designed electrodes from these hybrid aerogels exhibited 
high electrochemical activities, including significant capac-
ity (~1270 mAh  g−1 at 0.1C), enhanced cycling life (~500 
cycles), and low capacity decay rate (~0.07% per cycle), with 
excellent areal capacity (5.27 mAh  cm−2). Such composites 
with unique properties should be further explored for con-
structing intelligent devices with biomedical potentials [37].

Several methods have been reported for synthesizing 
MXenes and graphene based on green chemistry principles 
to avoid the utilization of toxic/harmful agents and labo-
rious processes. However, greener methods for synthesis 
and functionalization are still in the infancy stages, and 
more elaborative studies should be planned to find low-
cost, simple, up-scalable, and environmentally benign tech-
niques for the synthesis of these structures. In one study, 
MXene nanosheets were synthesized using an electrochemi-
cal method without using dangerous acid/alkali etchants; 
although the prepared MXenes exhibited high stability and 
battery performance, it should be further explored for a 
variety of applications [38]. Greener method for fabricat-
ing graphene oxide sheets by water electrolytic oxidation of 

graphite was also reported (Fig. 3). The pre-intercalation of 
graphite could successfully inhibit the anodic electrocata-
lytic oxygen evolution reaction of water at high voltage to 
permit the ultrafast oxidation of graphene lattice within a 
few seconds [39]. Besides, porous graphene was eco-friendly 
synthesized via the combination of sodium citrate treatment, 
hydrothermal reduction, and lyophilization processes. These 
graphene structures were deployed for designing biosensors 
with high sensitivity and selectivity (the low limit of detec-
tion was ~83.0 nmol  L−1) [40].

3  Biomedical Prospects

MXenes and MXene-based (nano)structures possess abun-
dant functional groups on their surfaces, offering modi-
fication/functionalization opportunities with flexibility. 
In addition to their high stability and hydrophilicity, they 
also contain complete metal atomic layers and tunable com-
position which make them attractive candidates for clinical 
and biomedical purposes [9]. For instance, smart nanoscale 
systems have been constructed by applying MXenes and 
graphene structures with cancer therapy/diagnosis and drug 
delivery potentials [41–44]. In one study, biocompatible 

Fig. 2  The preparative process of MXene-reduced graphene oxide (RGO) hybrid aerogels through GO-assisted hydrothermal assembly tech-
nique followed by directional-freezing and freeze-drying processes. Reproduced with permission from Ref. [24]. Copyright 2018 American 
Chemical Society
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MXene  (Ti2N) quantum dot-based systems with high sta-
bility and targeting/selectivity properties were introduced 
with cancer photoacoustic imaging and photothermal ther-
apy potentials [45]. Furthermore, biocompatible MXene 
 (Ti3C2Tx) structures with cellular uptake features exhibited 
high transferring potentials from vascular endothelial cells 
with localization, stability, and auto-fluorescence advan-
tages at different emission-excitation wavelengths allowing 
post-transport examination and tracking [46]. On the other 
hand, graphene- and MXene-based (nano)structures have 
been deployed in constructing smart delivery systems for 
antiviral or antimicrobial drugs in addition to the produc-
tion of antiviral/antimicrobial surface coatings and medical 
equipment (e.g., face masks) [47, 48]. Growth kinetics stud-
ies demonstrated that MXene nanosheets with sharp edges 
could directly and physically interact with the surface mem-
brane of bacterial cells, causing the release of cellular materi-
als from the cells [49]. It was revealed that graphene oxide 
derivatives could successfully obstruct the infection of HSV-
1, mimicking the cell surface receptor heparan sulfate [50]. 
However, there are limited studies focused on MXene-based 
structures for detecting or inhibiting pathogenic viruses. As 
an example, MXenes  (Ti3C2) could be applied for recognition 
of human papillomavirus (HPV) with high selectivity and 
fluorescence quenching ability to dye-labeled single-stranded 
DNA (ssDNA) as well as significant affinity for ssDNA and 
double-stranded DNA (dsDNA) [51]. Under the fluorescence 
quenching influence of the MXene nanosheets, ssDNA probe 
exhibited the minimal fluorescent emission, providing magni-
fied fluorescent biosensor for specific recognition of HPV-18 
(the low limit of detection was ~100 pM) [51].

Different types of MXene and graphene-based (nano)
composites have been deployed for tissue engineering and 
regenerative medicine purposes, with efficient multifunc-
tionality and good biocompatibility. Mi et al. [52] introduced 
3D-printed tissue-engineered bone scaffolds using MXene 
 (Ti3C2)-based structures to repair bone defects; MXene 
structures were incorporated into composite scaffolds con-
structed from hydroxyapatite and sodium alginate through 
extrusion-based 3D printing for bone regeneration. These 
scaffolds with uniform structures and macropore morpholo-
gies had significant mechanical strength with improved alka-
line phosphatase performance, upregulated osteogenic gene 
expression, suitable biocompatibility, and stimulated miner-
alized-nodule generation/cell proliferation. They could effi-
ciently promote the regeneration of bone (in vivo), providing 
great opportunities for bone healing [52]. Notably, MXene-
based composites exhibited suitable hydrophilicity because 
of the presence of functional hydrophilic groups, providing 
microenvironment for growing bone marrow-derived mesen-
chymal stem cells [53]. They had good biocompatibility and 
improved cellular activity, and also could increase the dif-
ferentiation of stem cells to osteoblasts [53]. MXene  (Ti3C2) 
quantum dots with immunomodulatory effects have been 
explored for improving tissue repairing after injury. They 
selectively reduced the human  CD4+IFN‐γ+ T‐lymphocytes 
activation and stimulated the expansion of immunosuppres-
sive  CD4+CD25+FoxP3+ regulatory T‐cells in a triggered 
lymphocyte population [54]. Biocompatible chitosan‐based 
hydrogels with thermo-sensitivity, conductivity, and inject-
ability were produced using MXene quantum dots for stem 
cell and tissue repairing purposes [54]. Additionally, various 
composites of MXenes and graphene have been studied for 

Fig. 3  The preparative process of graphene oxide (GO) via the water electrolytic oxidation process. Reproduced with permission from Ref. [39]
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their possible free-radical scavenging applications toward 
reactive oxygen stress and reactive nitrogen species. They 
have shown suitable antioxidant performances to protect the 
cells from oxidative damages, providing great opportunities 
for free-radical scavenging applications [55].

The designed MXene-graphene hybrids have been applied 
as flexible supercapacitors, electrodes, ion batteries, and 
EMI-shielding [56–58]. However, there are some impressive 
explorations focused on their applications in (bio)sensing. 
For instance, MXene-graphene field-effect transistor sensors 
were designed for detecting influenza virus and coronavirus, 
with significant chemical sensitivity via antibody-antigen 
binding to obtain electrochemical signal transduction after 
the deposition of viruses onto the virus-sensing transduction 
material surface. The detection limit was as low as ~125 cop-
ies  mL-1 for the influenza virus and 1 fg  mL-1 for the recom-
binant 2019-nCoV spike protein [59]. Additionally, the 
incorporation of MXenes and graphene structures together 
can provide suitable porous materials with high binding 

capacity to enzymes with improved affinity and stability 
[60]. In one study, 3D porous MXene  (Ti3C2Tx)-graphene 
hybrid films were synthesized using a mixing-drying tech-
nique to produce biosensors for glucose detection (Fig. 4). 
Consequently, the designed biosensor demonstrated notice-
able electrochemical catalytic performance toward glucose 
biosensing suitable for glucose assays in sera. After con-
trolling MXene and graphene nanosheets ratio, the internal 
pore size could be optimized, affecting the immobilization of 
glucose oxide as well as glucose biosensing efficiency [60]. 
Besides, MXene  (Ti3C2Tx)/graphene/polydimethylsiloxane 
layered structures fabricated via vacuum filtration and pre-
polymerization mainly contained two layers of MXenes 
(upper layer) and flexible graphene/polydimethylsiloxane 
composites (bottom layer). These composite films could be 
deployed in designing wearable strain sensors (especially 
for precise monitoring of full-range human motions) with 
a large range of linear response, as well as high sensitivity 

Fig. 4  A The preparative processes of MXene nanosheets and B MXene-graphene hybrid films for the immobilization of enzymes with glucose 
biosensing application. LiF—Lithium fluoride; DMSO—Dimethyl sulfoxide; GC—Glassy carbon; GOx—Glucose oxidase. Reproduced with 
permission from Ref. [60]. Copyright 2019 American Chemical Society
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(low limit of detection was ~0.025%), linearity  (R2 > 0.98), 
and cycling stability (more than 5,000 cycles) [61].

Layer-structured homogenous MXene  (Ti3C2TX)-graphene 
oxide film-based sensors were designed with flexibility, 
conductivity, and cycling stability advantages [62]. One 
study designed an aerosol jet printed flexible bimodal sen-
sor using graphene and MXene  (Ti3C2Tx) composites. The 
designed temperature sensor exhibited high sensitivity/accu-
racy and competitive thermos-power output (~53.6 μV/°C) 
with great flexibility/stability (negligible degradations after 
1000 bending cycles), opening many opportunities for man-
ufacturing multifunctional devices with biomedical poten-
tials [1]. Notably, the d-spacing and oxygen groups were 
successfully controlled by MXene/graphene oxide compo-
sition ratio. These MXene-graphene composites exhibited 
long-term stability by suppressing MXene oxidation via the 
utilization of graphene oxide. These materials with unique 
features of linear sensitive response to humidity and high 
biocompatibility should be further explored in designing 
smart actuators as well as sensing and biology/health care 
devices (e.g., respiratory monitoring sensors) [62]. Further-
more, 3D aerogel-based piezoresistive sensors with superb 
linear sensitivity (331  kPa−1 from 0–500 Pa, 126  kPa−1 from 
500 Pa–7.5 kPa) and high conductivity were designed uti-
lizing MXene-reduced graphene oxide aerogels [63]. These 
sensors exhibited high performance and stability (even after 
17,000 compression cycles) in addition to the fast response 
time (load 71 ms, recovery 15 ms) and low detection limit 
(1.25 Pa). They can be further evaluated for designing sen-
sors with detection capabilities of heartbeat, breathing, and 
vocalization of the human body in real-time, showing their 
future applicability in flexible wearable electronic devices 
[63].

4  Biocompatibility and Toxicity Issues

Graphene-based materials have been extensively used 
in various biomedical applications such as bioimaging, 
biosensing, theranostics, drug/gene delivery, antibacteri-
als/antivirals, and tissue engineering applications. There-
fore, for any effective and successful translation of these 
materials and becoming commercialized products, there 
should be a significant exposure of the human body to 
graphene-based materials, which makes it essential to 

evaluate the degree of biocompatibility and cytotoxic-
ity of these materials to human cells. The potential cyto-
toxic effects of graphene-based materials on human cells 
mainly depend on their physicochemical characteristics, 
the nature of their interaction with cells, and their accu-
mulation in specific tissues/organs [64]. The toxicological 
effects of graphene-MXene composites are also expected 
to be most affected by the presence of graphene and to 
further elaborate on these effects, a deep understanding 
of their cellular and molecular interactions with human 
cells/tissues/organs is required [65–68]. Figure 5 shows 
the potential mechanism of action encompassing hierar-
chical events that happen in human cells upon exposure 
to graphene-based materials.

For clinical translation of MXene- and graphene-based 
(nano)structures, future studies should be comprehensively 
focused on (eco)toxicological and cytotoxicity properties of 
these materials [69–72]. For instance, the biocompatibil-
ity of MXenes  (Ti3C2Tx) was analyzed for possible toxic-
ity in a zebrafish embryo model (in vivo assessments) [73]. 
Accordingly, the zebrafish embryos could uptake MXenes 
with dose-dependent behavior, with the highest NOEC (no 
observed effect concentration) ≈50 μg  mL−1, the lethal 
concentration 50 ≈257.46 μg  mL−1, and LOEC (lowest 
observed effect concentration) ≈100 μg  mL−1. Notably, no 
meaningful teratogenic influences could be detected in the 
examined model at 100 μg  mL−1. After locomotion and neu-
rotoxicity assessments, MXenes (50 μg  mL−1) demonstrated 
no harmful influences on neuromuscular performances. 
Based on the results at concentrations below 100 μg  mL−1, 
these MXene structures could be categorized as practically 
nontoxic based on the Acute Toxicity Rating Scale (ATRS) 
by the Fish and Wildlife Service [73]. By developing eco-
friendly methods for the synthesis of MXenes and graphene 
materials, their biosafety features can be highly improved 
[73–78]. Also, surface functionalization of these structures 
by applying suitable bioactive and biocompatible agents can 
help to enhance their stability, pharmacokinetics, biocom-
patibility, and targeting properties, causing high specificity 
and reduced off-target effects [79]. Another crucial aspect 
that should be noted for their future clinical and biomedi-
cal applicability is the reduction in their stability due to the 
undesired events such as aggregations or accumulations, 
which can reduce their performances/functionalities and 
surface area [80, 81].
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5  Conclusions and Future Outlooks 

MXene-graphene hybrids have been explored due to their 
fascinating physicochemical properties, which make them 
attractive candidates for future biomedical explorations. 
Although MXenes-graphene nanomaterials have attracted 
wide attention in bio- and nanomedicine, their possible 
applications for drug delivery, cancer therapy, and thera-
nostics are still uncertain concerning their biocompatibil-
ity and toxicity, lack of clinical assessments, and enough 
specificity/selectivity. Their biological sensing and imaging 

properties  are typically restricted by their non-specific 
adsorption. MXenes with a larger interlayer spacing had 
higher specific surface area and additional exposed active 
sites. In this context, hybridization or surface modifications 
can  remarkably  improve multifunctionality and reduce 
the possible toxicity of these structures. Natural polymers 
(e.g., cellulose or chitosan nanofibers) can be combined with 
MXenes and graphene structures to improve their biomedical 
applicability. Additionally, the commercialization and eco-
friendly manufacturing of these structures should be com-
prehensively explored to find inexpensive and up-scalable 

Fig. 5  The potential mechanism of toxicity to human cells upon exposure to graphene-based materials



Nano-Micro Lett.          (2022) 14:130  Page 9 of 12   130 

1 3

strategies with higher safety profile. Optimization of reac-
tion conditions, environmental stability, surface chemistry 
characterizations, nanotoxicological studies, systematic 
biocompatibility analyses (both in vitro and in vivo), and 
pre-/clinical assessments still need to be addressed. MXene 
structures with single-layer, fewer defects, and larger size 
had higher conductivity, illustrating that the synthesis condi-
tions and their properties can significantly affect their quality 
and future applications; the intrinsic features of MXenes and 
graphene can be improved by controlling reaction mixture 
conditions (e.g., pH and temperature), surface functional 
groups/terminations, and interlayer spacing.
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