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S1 Supplementary Note 

S1.1 Estimation of the Porosity of Compressed Electrodes 

The density of the silicon oxide is 2.13 g cm-3, and we assumed the density of the 

graphene was 2.0 g cm-3 (since the density of a graphene is approximately 1.5-2.0 g 

cm-3). The theoretical density of the composite is calculated as [S1]: 

composite
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The estimation of the porosity of the composite electrodes (ϕ) is: 

cal. exp.
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S1.2 Impedance Theory for Pores According to the Transmission Line Model 

(TLM) 

For non-faradaic and faradaic processes at porous electrodes, the overall impedance is 

expressed as Eqs. S3 and S4, respectively. 
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The limiting values of the real (Z’ω) as ω→0 in non-faradaic, and faradaic processes 

are shown by Eqs. S3 and S4, respectively. 

' ion
nonfaradaic, 0

R
Z =

3
→                                                   [S5] 

'

, 0Z
3

ion
faradaic ct

R
R→ = +                                                [S6] 

where Rion is the mobility of Li ions inside the porous electrodes. From these 

mathematical equations, Rion can be expressed as shown in Eq. S7 and S8: 
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where Rion,L is ionic resistance per unit pore length. In addition, Rct is expressed as Eq. 

S9: 
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where Rct,A is the charge-transfer resistance per unit electroactive surface area. Using 

this combination approach, we have succeeded in separating the individual 

electrochemical parameters and corresponding kinetic interpretation from temperature 

dependence [S1, S2]. 

S1.3 Relaxation Time Constant According to the Complex Impedance Theory 

The impedance Z(ω) can be written the complex form: 

' "( ) ( ) ( )Z Z jZ= +                                                                         [S10] 

An approach by using the impedance data to consider the cell as a whole: 
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Eq. S10 and S11 lead to Eq. S12: 
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It is to define: 
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leading to: 
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where C’(ω) is the real part of the capacitance C(ω), C’’(ω) is the imaginary part of the 

capacitance C(ω). The low-frequency value of C’(ω) corresponds to the cell that is 

measured during constant-current discharge. It corresponds to an energy dissipation 

by an irreversible process that can lead to a hysteresis. The C’’(ω) is utilized to 

characterize the distribution of double electrode layer capacitance responsiveness. 

This time constant has earlier been described as a dielectric relaxation time 

characteristic of the whole system [S3-S5]. 

S1.4 Capacitive Contribution in LHGF/SiO 

The capacitive contribution from the electrodes were obtained by separating the 

diffusion controlled capacity from the capacitance-controlled capacity according to 

the following equation: 

1

2
1 2i k v k v= +                                                      [S16] 

where i is the total current response at a fixed potential (V) during the CV test, k1v is 

the contribution from the surface controlled process, and k2v
1/2 is the contribution 

from the diffusion controlled process. Hence, the percentage of surface contribution is 

calculated by: 

1k v
C

i
=                                                          [S17] 

The LHGF/SiO-75 electrode shows a surface contribution of 3% at 0.1 mV s-1. Upon 

gradually increasing the scan rate to 0.2 and 0.5 mV s−1, the surface contribution 

raises to 5% and 9%, respectively. The areal capacity of the diffusion-controlled 

process (height of the red columns in Fig. 4d) decreases with the increases of the scan 

rate due to diffusion limitations. The CV characteristics suggest that the diffusion 
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contribution determined from the voltammetric-sweep-rate-dependence method is 

primarily faradaic process in our materials [S12]. 

S2 Supplementary Figures and Tables 

 

Fig. S1 a SEM images of 3D composite. b Diameter distribution of LHGF/SiO 

composite. c TEM image and corresponding EDS mappings of LHGF/SiO composite. 

Scale bar, 500 nm. d TEM and HRTEM image of SiO particles with uniformly 

decorated by graphene sheets 

 

Fig. S2 The normalization processing of the tensile strength test for LHGF/SiO and 

HGF/SiO 
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Fig. S3 a Cross-sectional SEM images of LHGF/SiO composite after discharge. b 

Diameter distribution of LHGF/SiO composite after discharge. c Cross-sectional SEM 

images of HGF/SiO composite after discharge. d Diameter distribution of HGF/SiO 

composite after discharge 

 

Fig. S4 a and b Cross-sectional SEM images of LHGF/SiO composite along vertical 

cuts before a and after b cycled. c and d Cross-sectional SEM images of HGF/SiO 

composite along vertical cuts before c and after d cycled 
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Fig. S5 a Thermogravimetric analysis of LHGF/SiO-50% and LHGF/SiO-75%. b 

Thermogravimetric analysis of LGF/SiO-50% and LGF/SiO-75% composites 

 

Fig. S6 a XRD patterns of LHGF/SiO, LGF/SiO and G/SiO composites. b XRD 

patterns of LHGF/SiO before and after mechanical compression 

 

Fig. S7 a-d Nitrogen adsorption-desorption isotherms for LHGF/SiO and LGF/SiO 

composites 
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Fig. S8 a to d Nyquist plots for four types composites by using a symmetric cell with 

two identical electrodes (11 mg cm-2) at unlithiated state (SOC = 0%). The solid line 

is the best-fitting simulation for the equivalent circuit shown in e. The inset in a shows 

how Rion/3 is determined 
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Fig. S9 Characterization of the charge storage mechanisms. a Cyclic voltammetry 

curves at various scan rates from 0.1 to 20 mV s-1. b The relationship between peak 

current and scanning rate at low or high scanning rates. c Diffusion (red) and surface 

(blue) controlled contribution to Li+ storage of LHGF/SiO-75% at 0.1 mV s-1. d The 

proportion of diffusion controlled and surface controlled behavior under various 

scanning rates 

 

Fig. S10 a and b, Galvanostatic charge/discharge curves of two type electrode. a at 50 

mA g-1 rate b at 500 mA g-1 rate. The mass loading is 11 mg cm-2. c Rate-

performances of LHGF/SiO-50% and LGF/SiO-50% electrode under same mass 

loading (11 mg cm-2) 
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Fig. S11. The voltage versus specific capacity profiles of flexible LHGF/SiO-75% after 

20 cycles of bending (A bending cycle is vertical fold) 

 

Fig. S12. a The charge/discharge voltage–capacity curves for full cells tested at 1 C 

rate. b Cycling performance of NCM 523‖LHGF/SiO-75% with the voltage range of 3-

4.35 V. Commercial high-energy batteries typically have a maximum full-cell areal 

capacity cell of ~3 mAh cm-2, as indicated by the violet hashed area 

Table S1 Material parameters of various composites 

Composites 
V 

(cm3 g-1)[1] 

BET 

(m2 g-1) 

Vpore. 

(cm3 g-1)[2] 
ϕ[2] 

ρexp. 

(g cm-3)[2] 

LGF/SiO-50% 0.110 39 
0.46±0.03 0.49±0.02 1.06±0.04 

LHGF/SiO-50% 0.120 53 

LGF/SiO-75% 0.058 16 
0.31±0.03 0.39±0.02 1.28±0.05 

LHGF/SiO-75% 0.068 29 

Note: [1] The adsorption cumulative volume of pores between 1.7 and 300 nm width. 

[2] Pore volume (Vpore.), porosity (ϕ) and the compacted density (ρexp.) of composite 

electrodes after compression were calculated based on 20 samples. 
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Table S2 Resistances determined from the transmission line model for symmetric 

cells with various porosities. The mass loading was 11 mg cm-2 

Electrode Rsol (ohm cm2) Rhigh (ohm cm2) Rion (ohm cm2) 

LGF/SiO-50% 1.13 3.82 23.61 

LGF/SiO-75% 1.16 5.04 24.81 

LHGF/SiO-50% 0.95 2.47 9.6 

LHGF/SiO-75% 1.07 2.86 13.23 
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Table S3 Comparison of energy storage performance metrics for various Li-ion battery anode materials 

Electrode materials Graphite 
Micro-Si@G 

cages 

SiO-PPy-

500 

SnO2/

HGF 
YS-Si/C 

AMPSi

@C 
LHGF/SiO-75% 

Refs. [S5] [S6] [S7] [S8] [S9] [S10] This work 

Mass loading (mg cm
-2

) 12.5 0.8 1.75 12 2.83 2.9 21 44 94 

G
ra

v
im

et
ri

c 

Capacity[1] 

(mAh g
-1

) 
222 1260 1127.5 910 1272 1414 1229 1277 951 

Current density 

(mA g
-1

) 
144 2100 100 100 200 414 100 100 100 

Capacity[2] 

(electrode+current collector) 

(mAh g
-1

) 

124 102 168 500 281 318 832 1041 859 

Current density[2] 

(electrode+current collector) 

(mA g
-1

) 

80 170 15 55 44 93 68 82 90 

Capacity (device)[3] 

(mAh g
-1

) 
85 48 89 338 155 177 625 874 782 

Current density (device) 

(mA g
-1

) 
55 80 8 37 25 52 51 68 82 

A
re

al
 Capacity 

(mAh cm
-2

) 
2.8 1.1 1.97 11 3.6 4.1 25.8 56.2 89.1 

Current density 

(mA cm
-2

) 
1.8 1.68 0.175 1.2 0.02 1.2 2.1 4.4 9.37 

Notes: [1] The gravimetric capacities are normalized by the total mass of electrodes including binders and carbon black; capacities in brackets 

are normalized by the active material only. [2] Assuming passive components (metal current collector and the separator) are about 10 mg cm-

2.[3] Calculated based on the industry standard (active materials account for 33% of total weight of the package when assuming the mass loading 

of the active material is about 10 mg cm-2) [S5, S11]. 
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