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S1 Experimental Section 

S1.1 Computational Methods  

The Vienna Ab initio Software Package (VASP 5.3.5) code was used to obtain all the 

density functional theory (DFT) calculations under the projected augmented wave 

(PAW) approach and Perdew-Burke-Ernzerhof (PBE) generalized gradient 

approximation [S1-S4]. The cutoff energy was set at 450 eV for the plane-wave basis 

set. The Monkhorst-Pack (MP) grids were employed to optimize the Brillouin zone of 

the surface unit cell, and the k-point mesh density is 2π×0.04 Å−1 [S5]. In order to 

complete the geometric optimization, the force and electronic self-consistent iteration 

were converged to 0.01 eV Å-1 and 10−5 eV, respectively. For reducing the 

underestimation of the electronic band gap and the excessive tendency to delocalize the 

electron density, the electronic structure of catalysts was obtained by the PBE+U 

method. Herein, the Hubbard parameter of Ni and Mo were set to U−J=3 and 5 eV, 

respectively. To avoid interactions between periodic images, the vacuum layer was set 

to 15 Å. 

S1.2 Preparation of Ni/MoO2@CN Nano-needle  

All reagents were produced by Aladdin Reagent Co., Ltd with no further purification. The 1.0 

M HCl was used to remove the oxide on the surface of NF (1.0×2.0 cm2) under the 

ultrasound condition, and following washed with ultra-pure water and ethanol for 

about 30 min. Then, the NF was immersed in a mixed solution [20 mL ethylene glycol, 

5 mL ultra-pure water, 54 mg (0.186 mmol) Ni(NO3)2·6H2O and 210 mg (0.170 mmol) 

(NH4)6Mo7O24·4H2O], which put into a 50 mL steel autoclave and maintained for 12 h 

at 140 °C. Subsequently, when the temperature cooled down to 25 °C, the NF was 

cleaned by C2H5OH and ultra-pure water, and vacuum dried at 80 °C for 12 h. Finally, 

it heated at different temperatures (350, 450, and 500 °C) for 2 h under the reducing 

atmosphere [5% H2+95% Ar, named as (Ni-MoO2)@CN nano-needle]. The mass loading 

of Ni/MoO2@CN nano-needle is 15.2 mg cm−2 by ultrasonication method to remove the 

materials from NF. The samples with Ni/Mo molar ratios of 1:5 and 1:9 were prepared by the 
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same method. Besides, MoO2@CN and Ni@CN were obtained by the same method 

without Ni and Mo source, respectively; Ni/MoO2 was obtained in pure water solution 

with Mo and Ni source. 

S1.3 Characterization  

The SU8220 scanning electron microscopy (SEM, HITACHI, Japan) was employed to 

study the surface morphology of the samples. The G2 80-300 Titan ETEM (FEI Co., 

USA) worked at 300 kV to obtain the energy dispersive X-ray (EDX) spectroscopy and 

high-resolution transmission electron microscopy (HRTEM) images. The D8 Advance 

X-ray diffraction (XRD) with λ=0.15406 nm CuKα radiation (SmartLab, Rigaku Co., 

Japan) to research the crystal structure of catalysts. The state of elements for catalyst 

was obtained by the ESCALab 250Xi X-ray photoelectron spectroscopy (XPS, 

ThermoFisher Scientific, USA) with an Al X-ray source worked at 150 W. The Horiba 

Jobin Yvon Inc., France, λ(He/Ne)=532 nm Raman spectrometer obtained the Raman 

spectroscopy. 

S1.4 Electrochemical Measurements  

Traditional three-electrode cell (include: all samples, reversible hydrogen electrode and 

graphite bar were used as work, reference and counter electrode, respectively) were 

used to evaluate linear sweep voltammetry (LSV), electrochemical impedance spectra 

(EIS) and chronopotentiometry (CP) for all catalysts, and obtained by electrochemical 

workstation (Germany) under 1.0 M KOH+30 °C solution containing saturated N2. EIS 

was evaluated at −0.2 and 1.5 V for HER and OER with the range from 100,000 to 0.1 

Hz and the amplitude is 5 mV. The iR correction potential (Ecorr) was obtained by the 

following equation: (1) Ecorr=Emea–iRs, the actually measured potential and solution 

resistance were the Emea and Rs. The WS performance was tested by the two-electrode 

cell at the same environment. The Tafel plots were originated from LSV curves by the 

formula: [(2) η=blog|j|+a], the current density, intercept and Tafel slope are j, a and b, 

respectively. 

Furthermore, the cathode/anode noble metal ink contained 40 wt% IrO2/C and 20 wt% Pt/C 

(purchased from Aladdin without further purification), which dispersed in a mixed solution 

[5.0 wt% Nafion (40.0 μL) and ethanol (0.96 mL)]. Subsequently, it was spread on the 0.5 

cm2 NF (named as IrO2/C and Pt/C). 
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S2 Supplementary Figures 

 

Fig. S1 Theoretical structure models of Ni/MoO2@CN, MoO2@CN, Ni/MoO2, CN and 

Ni@CN 

 

Fig. S2 Schematic illustration of H adsorption for Ni/MoO2@CN model 
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Fig. S3 ΔGH* calculated at different adsorb sites for Ni/MoO2@CN model 

 

Fig. S4 Schematic illustration of H adsorption for MoO2@CN model 

http://springer.com/40820


Nano-Micro Letters 

 S5/S29 

 

Fig. S5 (a) ΔGH* calculated at different adsorb sites for MoO2@CN model; (b) COHP and (c) 

PDOS analysis for MoO2@CN model with the H atom adsorbed on the sites 

 

Fig. S6 Schematic illustration of H adsorption for Ni@CN model 
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Fig. S7 (a) ΔGH* calculated at different adsorb sites for Ni@CN model; (b) COHP and (c) 

PDOS analysis for Ni@CN model with the H atom adsorbed on the sites 

 

Fig. S8 Schematic illustration of H adsorption for CN model 
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Fig. S9 (a) ΔGH* calculated at different adsorb sites for CN model; (b) COHP and (c) PDOS 

analysis for CN model with the H atom adsorbed on the sites 

 

Fig. S10 Schematic illustration of *OH, *O and *OOH adsorption for Ni/MoO2 model 
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Fig. S11 Schematic illustration of *OH, *O and *OOH adsorption for Ni@CN model 

 

 

Fig. S12 Schematic illustration of *OH, *O and *OOH adsorption for MoO2@CN model 

http://springer.com/40820


Nano-Micro Letters 

 S9/S29 

 

Fig. S13 Schematic illustration of *OH, *O and *OOH adsorption for CN model 

 

Fig. S14 OER reaction pathway for Ni@CN model 

 

Fig. S15 OER reaction pathway for MoO2@CN model 
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Fig. S16 OER reaction pathway for CN model 

 

Fig. S17 (a) COHP and (b) PDOS analysis for the Ni/MoO2 model with the O atom adsorbed 

on the sites 

 

Fig. S18 SEM images of precursor 
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Fig. S19 XRD spectrum of precursor 

 

Fig. S20 XRD spectrum of Ni/MoO2@CN 

 

Fig. S21 SEM images of Ni/MoO2@CN 
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Fig. S22 (a) XRD and Raman spectra of Ni/MoO2@CN obtained at (b) 350 °C, (c) 450 °C 

and (d) 550 °C 

 

Fig. S23 SEM images of Ni/MoO2@CN obtained at (a, b) 350 °C and (c, d) 550 °C 
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Fig. S24 (a) XPS summary, (b) C 1s, (c) O 1s and (d) N 1s spectra for Ni/MoO2@CN 

 

Fig. S25 HRXPS spectra of (a) Ni 2p and (b) Mo 3d for Ni/MoO2@CN, MoO2@CN, 

Ni@CN and Ni@CN+MoO2@CN hybrids 
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Fig. S26 HER LSV curves of Ni/MoO2@CN with/without iR correction 

 

Fig. S27 Comparisons of HER activity of Ni/MoO2@CN with other reported non-noble-metal 

catalysts 

 

Fig. S28 (a) HER LSV curves and (b) corresponding Tafel plots of HER for investigated 

samples 
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Fig. S29 (a) LSV curves and (b) Tafel slopes of HER for precursors annealed at different 

temperatures 

 

Fig. S30 (a) LSV curves and (b) Tafel slopes of HER with different Ni/Mo molar ratios 

 

Fig. S31 Nyquist plots tested at −0.2 V for HER with a frequency from 100,000 to 0.1 Hz in 

1.0 M KOH; Inset is the equivalent circuit model 
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Fig. S32 CV curves of Ni/MoO2@CN, Ni/MoO2, MoO2@CN and Ni@CN in 1.0 M PBS 

(pH=6.87) with a scan rate of 50 mV s−1 

We used the CV method to study the TOF of Ni/MoO2@CN, Ni/MoO2, Ni@CN and 

MoO2@CN for HER [S6-S10]. As shown in Fig. S32, the Ni/MoO2@CN, Ni/MoO2, Ni@CN 

and MoO2@CN are tested in 1.0 M phosphate buffer solution (PBS, pH=6.87), and the region 

is −0.2 to 0.6 V vs. RHE. The total number of active atoms should be proportional to the 

potential region range. 

 

Fig. S33 Comparisons of TOF values of Ni/MoO2@CN for HER with other reported 

non-noble-metal catalysts 
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Fig. S34 (a-d) Typical CV curves of the samples with scan rates ranging from 1 to 6 mV s‒1, 

the scanning potential range is from 0.10 V to 0.20 V; (e) Estimation of Cdl by plotting the 

capacitive current density against the scan rate to fit a linear regression 

 

Fig. S35 (a) HER LSV curves and (b) Rct of Ni/MoO2@CN before and after HER stability 

test 
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Fig. S36 SEM images of Ni/MoO2@CN after HER stability test 

 

Fig. S37 XPS spectra of Ni/MoO2@CN before and after HER stability test 

 

Fig. S38 OER LSV curves of Ni/MoO2@CN with/without iR correction 
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Fig. S39 (a) OER LSV curves and (b) corresponding Tafel plots of OER for investigated 

samples 

 

Fig. S40 Comparisons of OER activity of Ni/MoO2@CN with other reported non-noble-metal 

catalysts 

 

Fig. S41 (a) LSV curves and (b) Tafel slopes of OER for precursors annealed at different 

temperatures 
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Fig. S42 (a) LSV curves and (b) Tafel slopes of OER with different Ni/Mo molar ratios 

 

Fig. S43 Nyquist plots tested at 1.5 V for OER with a frequency from 100,000 to 0.1 Hz in 

1.0 M KOH; Inset is the equivalent circuit model 

 

Fig. S44 CV curves of Ni/MoO2@CN, Ni/MoO2 and Ni@CN for determining the redox 

surface sites of Ni2+/Ni3+ in 1.0 M KOH with a scan rate of 50 mV s−1 
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We used the active surface redox sites method to study the TOFs of Ni/MoO2@CN, Ni/MoO2, 

and Ni@CN for OER, by calculating the redox surface sites of Ni2+/Ni3+ without the 

capacitive current [S7, S11-S15]. As shown in Fig. S44, the Ni/MoO2@CN, Ni/MoO2 and 

Ni@CN are tested in 1.0 M KOH solution and the region is 1.0 to 1.8 V vs. RHE. The total 

number of active atoms is equal to the calculated charge of the peak Qs divided by the charge 

of an electron (1.6×10−19 C), and the formula is Ns=Qs/Qe, which is from the one-electron 

reaction of Ni2+/Ni3+. 

 

Fig. S45 Comparison of TOF values of Ni/MoO2@CN for OER with other reported 

non-noble-metal catalysts 

 

Fig. S46 (a) LSV curves and (b) Rct of Ni/MoO2@CN before and after OER stability test 
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Fig. S47 SEM images of Ni/MoO2@CN after OER stability test 

 

Fig. S48 XPS spectra of Ni/MoO2@CN before and after OER stability test 

 

Fig. S49 Volume of H2 and O2 actually measured at 30.0 mA versus time for Ni/MoO2@CN in 

1.0 M KOH solution 
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Fig. S50 Digital images of the generated H2 bubbles on (a) NF and (b) Ni/MoO2@CN. 

S3 Supplementary Tables 

Table S1 The values of Ni 2p for different samples 

Catalysts Ni0 2p3/2 (eV) Ni0 2p1/2 (eV) 

Ni/MoO2@CN 853.0 870.3 

Ni/MoO2 852.7 870.0 

Ni@CN 852.5 869.8 

Table S2 The values of Mo 3d for different samples 

Catalysts Mo4+ 3d5/2 (eV) Mo4+ 3d3/2 (eV) 

Ni/MoO2@CN 229.4 232.5 

Ni/MoO2 229.7 232.8 

MoO2@CN 229.9 233.0 

Table S3 Comparisons of HER activity of Ni/MoO2@CN with other reported 

non-noble-metal catalysts 

Catalysts 

 

η−1,000 

(mV) 

Refs. 

Ni/MoO2@CN 267 This work 

NiP2-FeP2 327 [S16] 

Ni2P-Fe2P/NF 333 [S17] 

Ni2(1-x)Mo2xP 294 [S18] 

C-Ni1-xO/3DPNi 245 [S19] 

Co-Ni3S2/NF 750 [S20] 

FeP/Ni2P ~275 [S21] 

MoS2/Mo2C 220 [S22] 

F0.25C1CH/NF 256 [S23] 

Sn-Ni3S2/NF 570 [S24] 

Ni2P/NF 306 [S25] 
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Table S4 Comparisons of TOF values of Ni/MoO2@CN, Ni/MoO2, MoO2@CN and Ni@CN 

for HER 

Catalysts TOF (s−1@100 mV) 

Ni/MoO2@CN 1.45 

Ni/MoO2 0.53 

MoO2@CN 0.38 

Ni@CN 0.19 

Table S5 TOF values of Ni/MoO2@CN obtained at different overpotentials for HER 

Overpotentials (mV) TOF (s−1) 

50 0.51 

100 1.45 

150 3.18 

Table S6 Comparisons of TOF values of Ni/MoO2@CN for HER with other reported 

non-noble-metal catalysts 

Catalysts TOF (s−1@ mV) Refs. 

Ni/MoO2@CN 1.45@100 This work 

Mo2N-Mo2C/HGr 0.086@100 [S26] 

Ni2P 0.012@100 [S27] 

Co@N-CNT/NF 0.75@100 [S8] 

MoS3-CV films 0.3@340 [S6] 

Ni3N-VN/NF 1.5@100 [S7] 

P-Fe3N@NC NSs/IF ~0.7@100 [S28] 

N-NiVFeP/NFF ~0.04@180 [S29] 

NPC-sheet@NF 0.89@200 [S9] 

Ni9S8@MoS2 0.5@84 [S10] 

Mn-MoS2/rGO 0.05@110 [S30] 

MoS2/NiCo2S4 0.5@89 [S31] 

Table S7 Comparisons of OER activity of Ni/MoO2@CN with other reported 

non-noble-metal catalysts 

Catalysts 

 

η1,000 

(mV) 

Refs. 

 

Ni/MoO2@CN 420 This work 

KT-Ni(0)@Ni(II)-TPA ~370 [S32] 

Ni2P-Fe2P/NF 337 [S17] 

Ni-Fe-OH@Ni3S2/NF ~720 [S33] 

Fe-CoP/NF 428 [S34] 

C-Ni1-xO/3DPNi 425 [S19] 

(Ni-Fe)Sx/NiFe(OH)y 510 [S35] 
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Co-Ni3S2/NFs 850 [S20] 

Sn-Ni3S2/NF 570 [S24] 

Co1Mn1CH/NF 462 [S36] 

CuS-Ni3S2/CuNi/NF 510 [S37] 

Table S8 Comparisons of TOF values of Ni/MoO2@CN, Ni/MoO2 and Ni@CN for OER 

Catalysts TOF (s−1@ 300 mV) 

Ni/MoO2@CN 1.23 

Ni/MoO2 0.28 

Ni@CN 0.14 

Table S9 TOF values of Ni/MoO2@CN obtained at different overpotentials for OER 

Overpotentials (mV) TOF (s−1) 

250 0.21 

300 1.23 

350 4.9 

Table S10 Comparison of TOF values of Ni/MoO2@CN for OER with other reported 

non-noble-metal catalysts 

Catalysts TOF (s−1@ mV) Reference  

Ni/MoO2@CN 1.23@300 This work 

FCN-MOF/NF 0.865@250 [S38] 

NiS2/NiSe2 ~0.065@300 [S12] 

NiMoN@NiFeN 0.09@300 [S14] 

Ni(OH)2-TCNQ/CF 0.24@400 [S13] 

Ni3N-VN/NF 1.52@300 [S7] 

Ni3N-COF 0.52@300 [S39] 

FeCoW 0.46@300 [S40] 

Co-Se NSs ~1.14@300 [S41] 

Zn-Co-LDH 0.88@710 [S42] 

HFC Co3O4-250 ~0.018@400 [S11] 

NiFe-NS 0.05@300 [S43] 
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